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Abstract

A canonical reciprocation center function for a class of geometric ob-
jects is a function assigning to each object a “canonical center” point, such
that if c is the canonical center of P , and P ∗ is the reciprocal of P with
respect to a hypersphere of any radius centered at c, then the canonical
center of P ∗ is also c.

We present a canonical reciprocation center function for compact (closed
and bounded) convex subsets of Rn with non-empty interior. This func-
tion is continuous under continous deformations of the compact convex
set, and it commutes with rotations, translations, reflections, and uniform
scalings of Rn. This answers a $1000 question posed by John Conway [1].

[ XXX is there a way to say the commuting thing more concisely?
“commutes with shape-preserving transformations on Rn”?]

1 Introduction

Two polyhedra P and Q are said to be duals of each other if there is a 1-to-1
incidence-preserving correspondence between the (faces, edges, vertices) of P
and the (vertices, edges, faces) of Q, respectively.

When examining the structure of a polyhedron, it is often useful to examine
its dual polyhedron at the same time. For example, the computer program
Stella [XXX ref] allows viewing and manipulating a (“primal”) polyhedron P
and its dual polyhedron Q, either side-by-side, or superimposed.

However, the dual polyhedron Q, being defined only by its structure (i.e.
incidences among its boundary elements) in relation to P , is not geometrically
unique: for example, starting with any particular dual Q of P , any affine squash-
ing, stretching, or shearing of Q results in a new polyhedron that equally well
satisfies the definition of dual of P . More exotic deformations of R3 result in a
wide range of possible duals for any particular polyhedron.

So such a program or presentation has a choice to make: which dual to
present, for a given primal polyhedron P?
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First, note that it is not obvious that every polyhedron has a dual polyhedron
at all. We will henceforth restrict our attention to convex polyhedra: for this
class of polyhedra, we can use the process of reciprocation about a sphere (which
we will define in Section 2 [XXX get xref right]) to produce a dual polyhedron
Q; furthermore, reciprocating Q about the same sphere yields P again.

However, the process of reciprocation still leaves some freedom: it requires
a choice of reciprocation center (which can be any point in the interior of P )
and reciprocation radius. The radius is not particularly problematic: for a given
reciprocation center, changing the reciprocation radius simply results in a larger
or smaller reciprocal polyhedron Q, without changing its shape or orientation.
So a reasonable choice for radius might be one that equalizes some measure of
the sizes of P and Q, say, their volumes, surface areas, or average distances from
the reciprocation center (measured in any of various ways).

The choice of reciprocation center, on the other hand, is surprisingly prob-
lematic. Since the duality relation is symmetric, it seems reasonable and de-
sirable to try to make our canonical-dual-choosing process symmetric as well.
But obvious choices of reciprocation center violate this desired symmetry. For
example, let’s look at what happens when we try using the centroid (center of
mass) of the primal polyhedron as the reciprocation center. Starting with P ,
we find its centroid c (P ) and reciprocate about a sphere centered at c (P ) to
get the reciprocal polyhedron Q. Then we find the centroid c (Q) of Q and
reciprocate Q about a sphere centered there to get a polyhedron P ′. P ′ has
the same structure as P (since they are both dual to Q, which specifies their
structure), but in general they will not have the same shape, unless c (Q) hap-
pens to equal c (P ), which is not true in general. Various other näıve attempts
result in exactly the same problem, and one becomes tempted to believe that
no well-behaved center-choosing strategy exists.

Note that in the special case when P has a center of symmetry c (i.e. a
unique point that is fixed by all symmetries of P ), then there is no issue: c
is the natural choice, and in fact it is the only possible choice, assuming we
want behavior independent of the orientation of P . This is the case for the
regular (Platonic) and uniform (Archimedian) polyhedra. So the difficulty arises
when we start looking at more general polyhedra without centers of symmetry,
e.g. certain of the Johnson solids (convex polyhedra whose faces are regular
polygons) [XXX ref].

Our task is to find a canonical reciprocation center function: that is, a func-
tion assigning to each convex polyhedron a point in its interior suitable for use
as a reciprocation center. In particular, it must satisfy the desired symmetric
behavior described above, as well as a reasonable continuity condition– contin-
uous changes in P must not result in jumps of the reciprocation center! At this
point, it is not obvious that any such function exists.

In this paper, will construct such a function. [XXX should mention that the
function has even better/stronger continuity than might be expected: it does
not jump even if the topology of the polyhedron changes, e.g. when a face is
subdivided by addition of a new edge.] The construction and proof works not
just for convex polyhedra, but for all compact (i.e. closed and bounded) convex
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subsets of Rn (n ≥ 1) with non-empty interior. So we start with the following
definitions.

Definitions: For n ≥ 1, let

Pn = {P ⊂ Rn : P is compact (closed and bounded), convex,

and has non-empty interior} .
Pn0 = {P ∈ Pn : 0 ∈ int (P )} .

where int (P ) denotes the interior of P .

2 Reciprocation

Definitions: If P ∈ Pn
0 , we define the reciprocal P−1 of P about the unit

hypersphere as:

P−1 = {q ∈ Rn : ∀p∈P p · q ≤ 1} .

[ XXX warn not to call it “inverse” or you will be spanked ]
It easily follows from the definition that reciprocation reverses scale; that is,

for r > 0:

(rP )
−1

=
P−1

r
(1)

where rP = {rp : p ∈ P} .
It is also straightforward to check that P−1 is compact and convex, and

contains 0 in its interior; i.e. P−1 ∈ Pn0 and so
(

P−1
)−1

is defined.

Lemma 2.1 For all P ∈ Pn
0 ,
(

P−1
)−1

= P .

Proof of Lemma 2.1: For all v ∈ Rn, let H (v) = {w ∈ Rn : w · v ≤ 1}. Note
that {H (v) : v ∈ Rn \ {0}} is precisely the set of closed half-spaces containing
the origin in their interiors, and H (0) = Rn. Note also the following duality
correspondence: for all v,w ∈ Rn,

w ∈ H (v)⇐⇒ v ·w ≤ 1⇐⇒ v ∈ H (w) . (2)

Then, given P ∈ Pn
0 ,

P−1 = {q ∈ Rn : ∀p∈P p · q ≤ 1} by definition

= {q ∈ Rn : ∀p∈P q ∈ H (p)} by (2)

=
⋂

{H (p) : p ∈ P} . (3)

On the other hand,

P−1 = {q ∈ Rn : ∀p∈P p · q ≤ 1} by definition

= {q ∈ Rn : ∀p∈P p∈H (q)} by (2)

= {q ∈ Rn : P ⊂ H (q)} . (4)
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Combining these two ways of looking at reciprocation, we get:

(

P−1
)−1

=
⋂

{

H (q) : q ∈ P−1
}

by (3)

=
⋂

{H (q) : q ∈ Rn and P ⊂ H (q)} by (4)

=
⋂

{H (q) : q ∈ Rn \ {0} and P ⊂ H (q)} ,

the last equality holding since H (0) = Rn does not affect the intersection. In
other words,

(

P−1
)−1

=
⋂

{H : H is a closed halfspace, 0 ∈ int (H), and P ⊂ H}

=
⋂

{H : H is a closed halfspace and P ⊂ H} , since 0 ∈ int (P ).

So
(

P−1
)−1

is the intersection of all closed half-spaces that contain P ; that

is,
(

P−1
)−1

is the closure of the convex hull of P . But P is already convex and

closed, so
(

P−1
)−1

= P . ¤
The proof of Lemma 2.1 used the generally useful fact that P−1 can be

thought of in two ways: either as the intersection of all closed halfspaces H (p)
corresponding to points p ∈ P , or as the set of all points q corresponding to
the closed halfspaces H (q) containing P . Boundary points of P correspond
to bounding planes of P−1 and vice-versa. In particular, if P is a polygon or
polyhedron, then so is P−1, and the vertices of P correspond to the sides or
faces of P−1 and vice-versa.

We now generalize the definition of reciprocation about the unit hypersphere
to that of reciprocation about an arbitrarily sized hypersphere centered any-
where in the interior of P (P may or may not contain the origin), as follows. To
reciprocate about a hypersphere, given the hypersphere’s center c ∈ int (P ) and
radius r > 0, we translate and scale Rn so that the hypersphere has center 0 and
radius 1, reciprocate, and then apply the inverse scale and translation. Writing
this out and applying (1), we get, for all P ∈ Pn, c ∈ int (P ), and r > 0:

reciprocal (P, c, r) = c + r

(

P − c

r

)−1

= c + r2 (P − c)
−1

. (5)

Then of course reciprocal (P,0, 1) = P−1. [Pictures of reciprocals needed! This
paper is self-contained so should try to be helpful to people unfamiliar with
reciprocals!]

Definition: If P ∈ Pn
0 and v ∈ Rn \ {0}, let rP (v) denote the (positive)

distance from the origin to the boundary of P in the direction of v.

Lemma 2.2 If P ∈ Pn
0 , then for all u ∈ Rn such that ‖u‖ = 1,

rP−1 (u) = 1 /max
p∈P

(p · u).
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Proof of Lemma 2.2: If P ∈ Pn
0 and ‖u‖ = 1, then

max
p∈P

(p · u) = sup {s ≥ 0 : ∃p∈P p · u > s}

= inf {s ≥ 0 : ∀p∈P p · u ≤ s} since P is connected,

bounded, and contains 0

= inf

{

1

r
≥ 0 : ∀p∈P p · u ≤ 1

r

}

= 1 / sup

{

r ≥ 0 : ∀p∈P p · u ≤ 1

r

}

= 1 / sup {r ≥ 0 : ∀p∈P p · ru ≤ 1}
= 1 / sup

{

r ≥ 0 : ru ∈ P−1
}

, by definition of P−1

= 1/rP−1 (u)

rP−1 (u) = 1 /max
p∈P

(p · u) . ¤

[XXX make corollary numbers in same sequence as lemma numbers!]

Corollary 2.1 If P ∈ Pn, then for all c ∈ int (P ) and u ∈ Rn such that
‖u‖ = 1,

r(P−c)−1 (u) = 1 /max
p∈P

((p− c) · u).

Proof of Corollary 2.1: Use (P − c) for the P of Lemma 2.2. ¤

3 A Canonical Reciprocation Center Function

Definition: Define f : Pn
0 → Rn by:

f (P ) =

∫

u∈Sn−1

log (rP (u))u dA,

the integral being taken over the (hyper-) area as u ranges over the unit hyper-
sphere Sn−1 in Rn.

Intuitively, f (P ) is the weighted average of all unit vectors, with each weight
being equal to the logarithm (possibly negative) of the distance from the origin
to the boundary of P in that direction.

f can be thought of as a vector-valued measure of the “offcenteredness” of
P from the origin. In particular, note that when only one part of the boundary
of P is very close to the origin, f (P ) will be weighted heavily in the opposite
direction due to the dominance of the negative logarithm in the direction of the
boundary.

[ XXX mention that the log can be with respect to any base; changing the
base multiplies f by a scalar, and all the results of this paper still hold, and the
final reciprocation center is the same ]

A somewhat surprising property of f (P ) is that it is impervious to scaling
of P , as the next Lemma shows.
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Lemma 3.1 If P ∈ Pn
0 and s > 0, then f (sP ) = f (P ), where sP = {sp : p ∈ P}.

Proof of Lemma 3.1:

f (sP ) =

∫

u∈Sn−1

log (rsP (u))u dA

=

∫

u∈Sn−1

log (s rP (u))u dA

=

∫

u∈Sn−1

(log (s) + log (rP (u)))u dA

= log (s)

∫

u∈Sn−1

u dA+

∫

u∈Sn−1

log (rP (u))u dA

= 0 +

∫

u∈Sn−1

log (rP (u))u dA

= f (P ) . ¤

At this point, we remark that in our quest to produce a canonical recipro-
cation center, a reasonable approach might be to look for a (hopefully unique)
point c ∈ int (P ) such that f (P − c) = 0, and hope that when we do the same
to the reciprocal of P with respect to a sphere centered at c, the result is the
same point c. Lemma 3.1 shows that the radius of reciprocation is irrelevant;
that is, if this works for some radius than it will work for all radii.

Unfortunately, it turns out that it does not work, since it can be (and often
is) that f (P ) = 0 and f

(

P−1
)

6= 0. However, we will now use f to construct
a similar function F that does not suffer from this problem.

Definition: Define F : Pn
0 → Rn by:

F (P ) = f (P )− f
(

P−1
)

.

The next Lemma shows that the analogue of Lemma 3.1 holds for F instead
of f .

Lemma 3.2 If P ∈ Pn
0 and s > 0, then F (sP ) = F (P ).

Proof of Lemma 3.2:

F (sP ) = f (sP )− f
(

(sP )
−1
)

= f (sP )− f
(

s−1P−1
)

by (1)

= f (P )− f
(

P−1
)

, by Lemma 3.1

= F (P ) . ¤

Lemma 3.3 If P ∈ Pn
0 , then F

(

P−1
)

= −F (P ).
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Proof of Lemma 3.3:

F
(

P−1
)

= f
(

P−1
)

− f
(

(

P−1
)−1
)

= f
(

P−1
)

− f (P ) , by Lemma 2.1

= −
(

f (P )− f
(

P−1
))

= −F (P ) . ¤

Now we would like to show that for all P ∈ Pn, there is a unique c ∈ int (P )
such that F (P − c) = 0. This will be established by the next two Lemmas.

Definition: For P ∈ Pn, define FP : int (P )→ Rn by:

FP (c) = F (P − c) .

Lemma 3.4 For all P ∈ Pn, FP is one-to-one.

[XXX I think this proof would look less cluttered if c wasn’t throughout it.
So, should argue for when c = 0 and then generalize (perhaps as a corollary).
Note this is fine for the refs to (6) and (7) later in Lemma 3.5 since they only use
the c=0 case. ] Proof of Lemma 3.4: Given P ∈ Pn, c ∈ int (P ), ε > 0, and v ∈
Rn such ‖v‖ = 1 and c+εv ∈ int (P ), we must show that FP (c + εv) 6= FP (c).
We will do this by showing that

(FP (c + εv)− FP (c)) · v < 0.

By definition of FP and F ,

(FP (c + εv)− FP (c)) · v =(F (P − (c + εv))− F (P − c)) · v

=
((

f (P − (c + εv))− f
(

(P − (c + εv))
−1
))

−
(

f (P − c)− f
(

(P − c)
−1
)))

· v

=(f (P − (c + εv))− f (P − c)) · v

−
(

f
(

(P − (c + εv))
−1
)

− f
(

(P − c)
−1
))

· v.

We want to show this is < 0, so it suffices to show that

(f (P − (c + εv))− f (P − c)) · v ≤ 0 (6)

and
(

f
(

(P − (c + εv))
−1
)

− f
(

(P − c)
−1
))

· v > 0. (7)

Proof of (6):
Define

S+
v =

{

u ∈ Sn−1 : u · v > 0
}

S−v =
{

u ∈ Sn−1 : u · v < 0
}

.
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For each u ∈ S+
v , let u− = u − 2 (u · v)v ∈ S−v ; i.e. u− is u with its “v”

component reversed. Note that

u− · v = −u · v. (8)

Since the disjoint union S+
v ∪ S−v is all of Sn−1 except for a set of area zero, we

can pair up the terms in the definition of f (P − c), as follows:

f (P − c) =

∫

u∈Sn−1

log (rP−c (u))u dA, by definition of f

=

∫

u∈S+
v

log (rP−c (u))u dA +

∫

u∈S−v
log (rP−c (u))u dA

=

∫

u∈S+
v

(

log (rP−c (u))u + log
(

rP−c

(

u−
))

u−
)

dA

So

f (P − c) · v =

∫

u∈S+
v

(

log (rP−c (u))u · v + log
(

rP−c

(

u−
))

u− · v
)

dA

=

∫

u∈S+
v

(

log (rP−c (u))u · v − log
(

rP−c

(

u−
))

u · v
)

dA, by (8)

=

∫

u∈S+
v

(

log (rP−c (u))− log
(

rP−c

(

u−
)))

u · v dA

=

∫

u∈S+
v

log

(

rP−c (u)

rP−c (u−)

)

u · v dA

Using this and the analogous expression for f (P − (c + εv)) · v, we get:

(f (P − (c + εv))− f (P − c)) · v

=

∫

u∈S+
v

(

log

(

rP−(c+εv) (u)

rP−(c+εv) (u−)

)

− log

(

rP−c (u)

rP−c (u−)

))

u · v dA

To show that this is ≤ 0, it suffices to show that the integrand is ≤ 0 for all
u ∈ S+

v . Each u · v > 0 by definition of S+
v , so we just need to show that

log

(

rP−(c+εv) (u)

rP−(c+εv) (u−)

)

− log

(

rP−c (u)

rP−c (u−)

)

≤ 0,

i.e. that

log

(

rP−(c+εv) (u)

rP−(c+εv) (u−)

)

≤ log

(

rP−c (u)

rP−c (u−)

)

,

i.e. that

rP−(c+εv) (u)

rP−(c+εv) (u−)
≤ rP−c (u)

rP−c (u−)
. (9)
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r
c

r
c + εv

P

Figure 1: Slice of P showing that
rP−(c+εv)(u)

rP−(c+εv)(u−) ≤
rP−c(u)
rP−c(u−) .

Figure 1 shows the intersection of P with a 2-d plane containing c, c + v,
and c + u. The fact that u · v > 0 guarantees that the two outer lines, from
c to bd (P ) in the direction of u− and from c + εv to bd (P ) in the direction
of u, do not cross. The two inner lines may or may not cross. If the part of
the boundary of P leading from c+ rP−c (u

−)u− to (c + εv)+ rP−(c+εv) (u)u

is a straight line, then by similar triangles (9) holds as equality; otherwise the
denominator of the LHS and the numerator of the RHS (i.e. the lengths of the
inner slanted lines in Figure 1) both become bigger, and so (9) still holds.

Proof of (7):

(

f
(

(P − (c + εv))
−1
)

− f
(

(P − c)
−1
))

· v

=

∫

u∈Sn−1

(

log
(

r(P−(c+εv))−1 (u)
)

− log
(

r(P−c)−1 (u)
))

u · v dA

=

∫

u∈Sn−1

log

(

r(P−(c+εv))−1 (u)

r(P−c)−1 (u)

)

u · v dA

=

∫

u∈Sn−1

log

(

maxp∈P ((p− c) · u)
maxp∈P ((p− (c + εv)) · u)

)

u · v dA, by Corollary 2.1

=

∫

u∈Sn−1

log

(

maxp∈P ((p− c) · u)
maxp∈P ((p− c) · u)− εv · u

)

u · v dA (10)

We want to show that this integral is > 0. When u · v > 0, the (positive)
denominator in (10) is < the (positive) numerator, so the logarithm is > 0 and
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so the integrand is > 0. Similarly, when u · v < 0, the logarithm is < 0 and
so again the integrand is > 0. So the integrand of (10) is > 0 for all u for
which u · v 6= 0, which is all of Sn−1 except for a set of area zero; therefore the
integral is > 0, as desired, and so (7) is established. This completes the proof
of Lemma 3.4. ¤

Lemma 3.5 If P ∈ Pn, then there exists c ∈ int (P ) such that FP (c) = 0.

Proof of Lemma 3.5: We can assume without loss of generality that the
interior of P contains the origin (otherwise pick an arbitrary interior point of P
and call it the origin); so P ∈ Pn

0 . It seems clear that as c ∈ int (P ) approaches
the boundary bd (P ), FP (c) ·(c/‖c‖) will decrease rapidly. So our strategy is
to find ε > 0 small enough so that for all b ∈ bd (P ), for all c on the segment
strictly between 0 and b with ‖b− c‖ ≤ ε ,

FP (c) · c

‖c‖ ≤ 0;

then we will be able to apply Lemma A.2 (see Appendix) using the function
−FP on a slightly shrunken P , with the amount of shrinkage based on ε.

We will need to do some calculations in order to see how small we need to
make ε.

Let θ = tan−1
(

rmin(P )
rmax(P )

)

∈
(

0, π4
)

, where rmin (P ) , rmax (P ) are respectively

the min and max distances from the origin to bd (P ).
For all v ∈ Sn−1, define

D θ(v) =
{

u ∈ Sn−1 : angle (u,v) ≤ θ
}

.

That is, D θ (v) is the closed (hyper-) spherical disk of radius θ centered at v.
Let b be an arbitrary boundary point of P, and v = b/‖b‖, so b = rP (v)v.
Note that for all c ∈ [0, b), for all u ∈ D θ (−v),

rP−c (u) ≥ rmin (P ) . (11)

This can be seen geometrically (see Figure 2) since, for such c, the pie-slice-
shaped set

{c + t rmin (P )u : u ∈ D θ (−v) and 0 ≤ t ≤ 1}

is a subset of the ice-cream-cone-shaped convex hull of

{z ∈ Rn : ‖z‖ ≤ rmin (P ) and z · v ≤ 0} ∪ {b}

which is a subset of P . (θ was chosen to be small enough so that this would
work for all b on the boundary of P ).

For each u ∈ D θ (v), define u′ = 2 (u · v)v − u; i.e. u′ is u reflected across
v. Then u′ ∈ D θ (v), and

u′ · v = u · v. (12)
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Figure 2: Pie and ice cream.

Define Hb = {z ∈ Rn : z · v ≤ b · v}.
Then for any c strictly between 0 and b, c + rP−c (v)v = b is on the

boundary of the closed halfspace Hb, so by convexity of P , for each u ∈ D θ (v),
at least one of P ’s boundary points c + rP−c (u)u and c + rP−c (u

′)u′ is in
Hb. [XXX picture would be nice] I.e.

(c + rP−c (u)u) · v ≤ b · v or (c + rP−c (u
′)u′) · v ≤ b · v

i.e.

rP−c (u)u ≤ (b− c) · v
u · v or rP−c (u

′)u′ ≤ (b− c) · v
u′ · v

(since u · v > 0 and u′ · v > 0, since u,u′ ∈ D θ (v)). I.e., by (12),

min (rP−c (u)u, rP−c (u
′)u′) ≤ (b− c) · v

u · v
=
‖b− c‖
u · v . (13)

But for u ∈ D θ (v), we know that

0 ≤ angle (u,v) ≤ θ ≤ π

4
,

11



so, since the cosine function is decreasing on the interval [0, π/4],

u · v = cos (angle (u,v)) ≥ cos
(π

4

)

=
1√
2
.

Applying this to (13), we get, for u ∈ D θ (v):

min (rP−c (u)u, rP−c (u
′)u′) ≤

√
2 ‖b− c‖ . (14)

Let’s look at the contributions the disjoint sets D θ (v), D θ (−v), and Sn−1 \
D θ (v) \ D θ (−v) make to f (P − c) · v when c ∈ int (P ) lies on the segment
(0, b) and ‖b− c‖ ≤ rmin (P ).

[XXX In all three of the following computations, I think we can avoid the
u ·v ≤ ‖u‖ ‖v‖ step, so that we end up with a bunch of integrals of u ·v in (18)
so that it becomes more uniform as well as a tighter bound. If we care.]
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For such c, the contribution that D θ (v) makes to f (P − c) · v is:

∫

u∈D θ(v)

log (rP−c (u))u · v dA

=
1

2

(

∫

u∈D θ(v)

log (rP−c (u))u · v dA+

∫

u∈D θ(v)

log (rP−c (u))u · v dA

)

=
1

2

(

∫

u∈D θ(v)

log (rP−c (u))u · v dA+

∫

u′∈D θ(v)

log (rP−c (u
′))u′ · v dA

)

=
1

2

(

∫

u∈D θ(v)

log (rP−c (u))u · v dA+

∫

u∈D θ(v)

log (rP−c (u
′))u · v dA

)

,

since (u′ ∈ D θ (v)⇔ u ∈ D θ (v)) and u′ · v = u · v

=
1

2

∫

u∈D θ(v)

(log (rP−c (u)) + log (rP−c (u
′)))u · v dA

=
1

2

∫

u∈D θ(v)

(log (min (rP−c (u) , rP−c (u
′)))

+ log (max (rP−c (u) , rP−c (u
′))))u · v dA

[XXX separate next step into two steps. Also I think maybe diam(P ) can be replaced with rmax(P )]

≤1

2

∫

u∈D θ(v)

(

log
(√

2 ‖b− c‖
)

+ log (diam (P ))
)

u · v dA by (14) and u · v > 0

=
1

2

(

log
(√

2 ‖b− c‖
)

+ log (diam (P ))
)

∫

u∈D θ(v)

u · v dA

=
1

2

(

log (‖b− c‖) + log
(√

2 diam (P )
))

∫

u∈D θ(v)

u · v dA

=
1

2
log ‖b− c‖

∫

u∈D θ(v)

u · v dA +
1

2
log
(√

2 diam (P )
)

∫

u∈D θ(v)

u · v dA

≤1

2
log ‖b− c‖

∫

u∈D θ(v)

u · v dA +
1

2

∣

∣

∣
log
(√

2 diam (P )
)
∣

∣

∣

∫

u∈D θ(v)

‖u‖ ‖v‖ dA

=
1

2
log ‖b− c‖

∫

u∈D θ(v)

u · v dA +
1

2

∣

∣

∣
log
(√

2 diam (P )
)∣

∣

∣

∫

u∈D θ(v)

dA

since u,v are unit vectors

=
1

2
log ‖b− c‖

∫

u∈D θ(v)

u · v dA +
1

2

∣

∣

∣
log
(√

2 diam (P )
)∣

∣

∣
Area (D θ (v))

(15)

where diam(P ) = max {‖p1 − p0‖ : p0,p1 ∈ P} exists and is finite by compact-
ness of P.
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The contribution that D θ (−v) makes to f (P − c) · v is:

∫

u∈D θ(−v)

log (rP−c (u))u · v dA

≤
∫

u∈D θ(−v)

log (rmin (P ))u · v dA by (11) and u · v < 0

= log (rmin (P ))

∫

u∈D θ(−v)

u · v dA

≤ |log rmin (P )|
∫

u∈D θ(−v)

‖u‖ ‖v‖ dA

= |log rmin (P )|
∫

u∈D θ(−v)

dA since u,v are unit vectors

= |log rmin (P )|Area(D θ (−v)) . (16)

And the contribution that Sn−1 \ D θ (v) \ D θ (−v) makes to f (P − c) · v is:

∫

u∈Sn−1\D θ(v)\D θ(−v)

log (rP−c (u))u · v dA

≤
∫

u∈Sn−1\D θ(v)\D θ(−v)

log (rP (u))u · v dA,

by the same pairing argument as the proof of (6) in Lemma 3.4, since c is in
direction v from 0

≤
∫

u∈Sn−1\D θ(v)\D θ(−v)

|log rP (u)| ‖u‖ ‖v‖ dA

=

∫

u∈Sn−1\D θ(v)\D θ(−v)

|log rP (u)| dA since u, v are unit vectors

≤
∫

u∈Sn−1\D θ(v)\D θ(−v)

max (|log rmin (P )| , |log rmax (P )|) dA

=max (|log rmin (P )| , |log rmax (P )|)
∫

u∈Sn−1\D θ(v)\D θ(−v)

dA

=max (|log rmin (P )| , |log rmax (P )|)Area
(

Sn−1 \ D θ (v) \ D θ (−v)
)

. (17)
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Putting it all together, we get:

F (P − c) · v

=f (P − c) · v − f
(

(P − c)
−1
)

· v by definition of F

≤f (P − c) · v − f
(

P−1
)

· v by (7) in proof of Lemma 3.4,

since c is in direction v from 0

≤f (P − c) · v +
∥

∥f
(

P−1
)∥

∥ ‖v‖
=f (P − c) · v +

∥

∥f
(

P−1
)∥

∥

=

∫

u∈Sn−1

log (rP−c (u))u · v dA +
∥

∥f
(

P−1
)∥

∥ by definition of f

=

(

∫

u∈D θ(v)

+

∫

u∈D θ(−v)

+

∫

u∈Sn−1\D θ(v)\D θ(−v)

)

log (rP−c (u))u · v dA

+
∥

∥f
(

P−1
)∥

∥

≤ 1

2
log ‖b− c‖

∫

u∈D θ(v)

u · v dA +
1

2

∣

∣

∣
log
(√

2 diam (P )
)∣

∣

∣
Area (D θ (v))

+ |log rmin (P )|Area(D θ (−v))

+ max (|log rmin (P )| , |log rmax (P )|)Area
(

Sn−1 \ D θ (v) \ D θ (−v)
)

+
∥

∥f
(

P−1
)
∥

∥ (18)

by (15), (16), and (17).
Notice that neither the integral nor the areas appearing in (18) depend on

v at all; they are the same for all v, depending only on θ which is a constant
(depending on P ). So the only part of (18) that is not constant is ‖b− c‖, and
so we can rewrite (18) as:

F (P − c) · v ≤ log ‖b− c‖ C1 + C2 (19)

for appropriate constants C1, C2 (depending on P ). Note that C1 > 0, so we
can make the RHS of (19) less than any desired target by choosing sufficiently
small ε > 0 and requiring ‖b− c‖ ≤ ε; then the LHS F (P − c) · v will be less
than the desired target as well.

Now we are finally ready to show that 0 ∈ range (FP ). By the previous
paragraph (setting our “desired target” to be 0), choose ε ∈ (0, rmin (P ) /2)
small enough so that for all b ∈ bd (P ) and c strictly between 0 and b with
‖b− c‖ ≤ ε,

F (P − c) · v ≤ 0

where v = b/‖b‖ = c/‖c‖; i.e.

F (P − c) · c ≤ 0

FP (c) · c ≤ 0. (20)
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Define Pε = {0} ∪ {c ∈ int (P ) \ {0} : ‖c‖ ≤ rP (c)− ε}; i.e. Pε is P with
its boundary shrunk by ε units radially towards the origin. Then bd (Pε) =
{c ∈ int (P ) : ‖c‖ = rP (c)− ε}, so all points c ∈ bd (Pε) satisfy (20). Pε is not
necessarily in Pn

0 since it typically is not convex[XXX picture might be nice];
however its convex hull hull (Pε) ∈ Pn

0 , and Pε ⊂ hull (Pε) ⊂ int (P ) (the latter
inclusion being since Pε ⊂ int (P ) and int (P ) is convex). Then bd (hull (Pε))
is even closer to bd (P ) than bd (Pε) is, so all points c ∈ bd (hull (Pε)) sat-
isfy (20) as well. So the function −FP restricted to hull (Pε) satisfies the
hypotheses of Lemma A.2 (see Appendix), so by that Lemma there exists
c ∈ hull (Pε) ⊂ int(P ) such that −FP (c) = 0, and so FP (c) = 0. ¤

Exercise 1 If P ∈ Pn, show that range (FP ) = Rn.

Definition: If P ∈ Pn, define c (P ) to be the unique point c ∈ int (P ) such
that F (P − c) = 0; i.e. such that FP (c) = 0. Existence and uniqueness of
c (P ) is guaranteed by Lemmas 3.5 and 3.4 respectively.

Theorem 1 If P ∈ Pn and c = c (P ), then for any r > 0, c = c (reciprocal (P, c, r)).

[ XXX in other words, c : Pn → Rn is a canonical reciprocation function, if
we define that earlier]

Proof of Theorem 1:
Assuming F (P − c) = 0, we must show F (reciprocal (P, c, r)− c) = 0.

F (reciprocal (P, c, r)− c) = F
(

r2 (P − c)
−1
)

by (5)

= F
(

(P − c)
−1
)

, by Lemma 3.2

= −F (P − c) , by Lemma 3.3

= −0 by assumption

= 0. ¤

4 Canonical Reciprocation Radius

[ XXX mention possible choices and relationships with the choice of canonical
center ]

5 Open Problems

[ XXX closed formula? algorithm? ]
[ XXX other similar log-based definitions I’ve thought of and haven’t dis-

proved?]
[ XXX other definitions based on matching the primal and dual CG, for

some notion of CG? ]
[ XXX a definition that is the centroid when P is a triangle? (or simplex)]
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[ XXX characterize all canonical-reciprocation-center functions. what does
the space of all such functions look like? Does it have isolated points? ]

[ XXX algebra of them? e.g. can we linearly interpolate between any two of
them? ]

6 Conclusions

[ XXX write me]

A Appendix

This appendix proves two topological lemmas related to Brower’s fixed-point
theorem. Lemma A.2 was used in the proof of Lemma 3.5.

Definitions: For n ≥ 1, let Bn be the closed unit ball in Rn, and let Sn−1 be
its boundary. That is,

Bn = {v ∈ Rn : ‖v‖ ≤ 1}
Sn−1 = {u ∈ Rn : ‖u‖ = 1}

Lemma A.1 If f : Bn → Rn is continuous and f (u) · u ≥ 0 for all u ∈ Sn−1,
then ∃v∈Bn f (v) = 0.

Proof of Lemma A.1: Assume, to the contrary, that the origin is not in the
range of f . Then we can define a continuous function g : Bn → Sn−1 by:

g (v) = − f (v)

‖f (v)‖ .

g is a continuous mapping from Bn to Bn. Brower’s fixed point theorem states
that any such mapping must have a fixed point, so there exists u ∈ Bn such
that u = g (u) (and so u ∈ Sn−1). So

u = g (u) = − f (u)

‖f (u)‖
f (u) = −‖f (u)‖u.

But then

f (u) · u = (−‖f (u)‖u) · u
= −‖f (u)‖ (u · u)
= −‖f (u)‖
< 0, since 0 6∈ range (f)

which contradicts the assumption that f (u) · u ≥ 0 for all u ∈ Sn−1. ¤
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Lemma A.2 If P ∈ Pn
0 (that is, P is a compact convex subset of Rn containing

0 in its interior), and f : P → Rn is a continuous function such that f (v)·v ≥ 0
for all v on the boundary of P , then ∃v∈P f (v) = 0.

Proof of Lemma A.2: The idea is to simply squash and stretch P radially
from the origin so that it becomes the unit ball, and then apply Lemma A.1.
Define a homeomorphism h : Bn → P by:

h (0) = 0

h (v) = rP (v)v, v 6= 0

where rP (v) is the distance from the origin to the boundary of P in the direction
of v. Then the composite function f ◦h : Bn → Rn is continuous, and for all
u ∈ Sn−1,

f ◦h (u) · u = f (h (u)) · u
= f (rP (u)u) · u
= f (rP (u)u) · (rP (u)u) /rP (u)

≥ 0, since rP (u)u is on the boundary of P .

So f ◦h satisfies the conditions of Lemma A.1, so the origin is in the range of
f ◦h and therefore is in the range of f . ¤
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