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Evening’s Goals

■ Discuss the mathematical transformations
that are utilized for computer graphics
• projection

• viewing

• modeling

■ Describeaspect ratioand its importance

■ Provide a motivation forhomogenous
coordinatesand their uses
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Mathematical Transformations

■ Use transformations for moving from one
coordinate space to another

■ The good news
• only requires multiplication and addition

■ The bad news
• its multiplication and addition of matrices



■ ■

■ ■2

4COEN 290 - Computer Graphics I

Mathematical Transformations ( cont. )

■ Coordinate spaces we’ll be using
• model

• world

• eye

• normalized device ( NDC’s )

• window

• screen

• viewport
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Simplified 2D Transform Pipeline

■ What if your data is not in viewport
coordinates?
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Simplified 2D Transform Pipeline ( cont. )

■ Need to map world to viewport coordinates

■ Simplelinear transformation
• linear transformations can be represented by

matrices
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Almost, but not quite

■ The 2x2 matrix isn’t quite enough to do the
whole job
• think about trying to map a point like (10,10)

into the (0,0)

■ Enter …homogenous coordinates

• add an additional “dimension” to your
coordinate vector

( )1yx
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Determining the Matrix Entries

■ Matrix forms of linear transforms are
shorthand for an “line” equation

■ So what we need is to determine what
equations we want to write as matrices
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Mapping World to Viewport Coordinates

Viewport coordinates

???
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Or as a Matrix

■ Let

then our matrix becomes
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Setting up OpenGL’s 2D world

■ OpenGL will do this automatically for us

gluOrtho2D ( xMin, xMax,

yMin, yMax );

■ However, it doesn’t do it quite as we
described
• first maps world coordinates intonormalized

device coordinates ( NDC )
• then maps from NDC’s to viewport coordinates
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Normalized Device Coordinates

■ Map each dimension linearly into[-1, 1]
• sometimes mapped to[0, 1]

■ Simplifies several things
• clipping

– don’t need to know viewport for clipping

• describes a device independent space
– no concerns about resolution, etc.

• more things which we’ll get to in a minute
– very useful when we’re in 3D
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Putting it all together
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Err … something doesn’t look right

■ Need to matchaspect ratio

■ Aspect ratios of different coordinate spaces
need to match

height

width
ratioaspect =

vpworld arar =
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What’s different for 3D

■ Add another dimension

■ Our transformation matrices become 4x4

■ More options for our projection transform

( )wzyx
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Where we’re at

■ What our transformation pipeline looks like
so far ...

viewportNDC’sWorld

This is really called aprojection transform
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Projection Transformations

■ Map coordinates into NDC’s

■ Defines ourviewing frustum
• sets the position of ourimaging plane

■ Two types for 3D
• Orthographic(or parallel) Projection

– gluOrtho2D ()

• PerspectiveProjection
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A Few Definitions First …

■ A viewing frustumis the region in space in
which objects can be seen
• All of the visible objects in our scene will be in

the viewing frustum

■ The imaging planeis a plane in space onto
which we project our scene
• viewing frustum controls where the imaging

plane is located
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Orthographic Projections

■ Project objects in viewing frustum without
distortion
• good for computer aided engineering and

design
– preserves angles and relative sizes
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Orthographic Projections ( cont. )
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Defining an Orthographic Projection

■ Very similar to mapping 2D to NDC’s

■ Use OpenGL’s
glOrtho ( l, r, b, t, n, f );





















−
−
−

−
+

−
−

−
+

−

−
+

−

1000

00

00

00

2

2

2

nf
nf

nf

bt
bt

bt

lr
lr

lr



■ ■

■ ■8

22COEN 290 - Computer Graphics I

Perspective Projections

■ Model how the eye sees
• objects farther from the eye are smaller

■ A few assumptions
• eye is positioned at the world space origin

• looking down the world -z axis

■ Clipping plane restrictions

farnear <<0
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Perspective Projections ( cont. )

■ Based on similar triangles
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Perspective Projections ( cont. )

■ Viewing frustum looks like a truncated
Egyptian pyramid
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Defining Perspective Projections

■ Two OpenGL versions
• glFrustum ( l, r, b, t, n, f );

– frustum not necessarily aligned down line of sight

– good for simulating peripheral vision

• gluPerspective ( fovy, aspect, n, f );

– frustum centered down line of sight

– more general form

– reasonable values: 65.0< fovy< 140.0
– aspect should match aspect ratio of viewport
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Defining a Perspective Projection

glFrustum ( l, r, b, t, n, f );
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Defining a Perspective Projection ( cont. )

gluPerspective ( fovy, aspect, n, f );

• then useglFrustum ()
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Clipping in 3D

■ Projections transforms make clipping easy

■ Use your favorite algorithm

■ Clipping region well defined
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Normalizing Projected Coordinates

■ w is a scaling factor

■ Perspective divide
• divide each coordinate byw

• maps into NDC’s

What about z? 
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