
■ ■

■ ■1

2COEN 290 - Computer Graphics I

Evening’s Goals

■ Discuss the mathematical transformations
that are utilized for computer graphics
• projection

• viewing

• modeling

■ Describeaspect ratioand its importance

■ Provide a motivation forhomogenous
coordinatesand their uses

3COEN 290 - Computer Graphics I

Mathematical Transformations

■ Use transformations for moving from one
coordinate space to another

■ The good news
• only requires multiplication and addition

■ The bad news
• its multiplication and addition of matrices

■ ■

■ ■2

4COEN 290 - Computer Graphics I

Mathematical Transformations (cont.)

■ Coordinate spaces we’ll be using
• model

• world

• eye

• normalized device (NDC’s)

• window

• screen

• viewport

5COEN 290 - Computer Graphics I

Simplified 2D Transform Pipeline

■ What if your data is not in viewport
coordinates?

World Coordinates

Date

S
to

ck
P

ric
e

Viewport coordinates

???

6COEN 290 - Computer Graphics I

Simplified 2D Transform Pipeline (cont.)

■ Need to map world to viewport coordinates

■ Simplelinear transformation
• linear transformations can be represented by

matrices

=

dc

ba

y

x

y

x

worldviewport

■ ■

■ ■3

7COEN 290 - Computer Graphics I

Almost, but not quite

■ The 2x2 matrix isn’t quite enough to do the
whole job
• think about trying to map a point like (10,10)

into the (0,0)

■ Enter …homogenous coordinates

• add an additional “dimension” to your
coordinate vector

()1yx

8COEN 290 - Computer Graphics I

Determining the Matrix Entries

■ Matrix forms of linear transforms are
shorthand for an “line” equation

■ So what we need is to determine what
equations we want to write as matrices

=

⇒+=

1101

xbmy
bmxy

9COEN 290 - Computer Graphics I

Mapping World to Viewport Coordinates

Viewport coordinates

???

World Coordinates
Date

S
to

ck
P

ric
e

()worldyMinxMin

()worldyMaxxMax

()vpyMinxMin

()vpyMaxxMax

()

() vpworld
worldworld

vpvp
vp

vpworld
worldworld

vpvp
vp

yMinyMiny
yMaxyMax

yMinyMax
y

xMinxMinx
xMaxxMax

xMinxMax
x

+−
−
−

=

+−
−
−

=

■ ■

■ ■4

10COEN 290 - Computer Graphics I

Or as a Matrix

■ Let

then our matrix becomes
worldworld

vpvp

worldworld

vpvp

yMinyMax

yMinyMax

yxMinxMax

xMinxMax

x mm −
−

−
− ==

world

worldyvpy

worldxvpx

vp

y

x

yMinmyMinm

xMinmxMinm

y

x

⋅−
⋅−

=

1100

0

0

1

11COEN 290 - Computer Graphics I

Setting up OpenGL’s 2D world

■ OpenGL will do this automatically for us

gluOrtho2D (xMin, xMax,

yMin, yMax);

■ However, it doesn’t do it quite as we
described
• first maps world coordinates intonormalized

device coordinates (NDC)
• then maps from NDC’s to viewport coordinates

12COEN 290 - Computer Graphics I

Normalized Device Coordinates

■ Map each dimension linearly into[-1, 1]
• sometimes mapped to[0, 1]

■ Simplifies several things
• clipping

– don’t need to know viewport for clipping

• describes a device independent space
– no concerns about resolution, etc.

• more things which we’ll get to in a minute
– very useful when we’re in 3D

■ ■

■ ■5

13COEN 290 - Computer Graphics I

Putting it all together

World Coordinates

Date

S
to

ck
P

ric
e

Date

S
to

ck
P

ric
e

NDC
DateS

to
ck

P
ric

e

Viewport
Coordinates

14COEN 290 - Computer Graphics I

Err … something doesn’t look right

■ Need to matchaspect ratio

■ Aspect ratios of different coordinate spaces
need to match

height

width
ratioaspect =

vpworld arar =

15COEN 290 - Computer Graphics I

What’s different for 3D

■ Add another dimension

■ Our transformation matrices become 4x4

■ More options for our projection transform

()wzyx

■ ■

■ ■6

16COEN 290 - Computer Graphics I

Where we’re at

■ What our transformation pipeline looks like
so far ...

viewportNDC’sWorld

This is really called aprojection transform

17COEN 290 - Computer Graphics I

Projection Transformations

■ Map coordinates into NDC’s

■ Defines ourviewing frustum
• sets the position of ourimaging plane

■ Two types for 3D
• Orthographic(or parallel) Projection

– gluOrtho2D ()

• PerspectiveProjection

18COEN 290 - Computer Graphics I

A Few Definitions First …

■ A viewing frustumis the region in space in
which objects can be seen
• All of the visible objects in our scene will be in

the viewing frustum

■ The imaging planeis a plane in space onto
which we project our scene
• viewing frustum controls where the imaging

plane is located

■ ■

■ ■7

19COEN 290 - Computer Graphics I

Orthographic Projections

■ Project objects in viewing frustum without
distortion
• good for computer aided engineering and

design
– preserves angles and relative sizes

20COEN 290 - Computer Graphics I

Orthographic Projections (cont.)

21COEN 290 - Computer Graphics I

Defining an Orthographic Projection

■ Very similar to mapping 2D to NDC’s

■ Use OpenGL’s
glOrtho (l, r, b, t, n, f);

−
−
−

−
+

−
−

−
+

−

−
+

−

1000

00

00

00

2

2

2

nf
nf

nf

bt
bt

bt

lr
lr

lr

■ ■

■ ■8

22COEN 290 - Computer Graphics I

Perspective Projections

■ Model how the eye sees
• objects farther from the eye are smaller

■ A few assumptions
• eye is positioned at the world space origin

• looking down the world -z axis

■ Clipping plane restrictions

farnear <<0

23COEN 290 - Computer Graphics I

Perspective Projections (cont.)

■ Based on similar triangles

y

z

n

'y

24COEN 290 - Computer Graphics I

Perspective Projections (cont.)

■ Viewing frustum looks like a truncated
Egyptian pyramid

■ ■

■ ■9

25COEN 290 - Computer Graphics I

Defining Perspective Projections

■ Two OpenGL versions
• glFrustum (l, r, b, t, n, f);

– frustum not necessarily aligned down line of sight

– good for simulating peripheral vision

• gluPerspective (fovy, aspect, n, f);

– frustum centered down line of sight

– more general form

– reasonable values: 65.0< fovy< 140.0
– aspect should match aspect ratio of viewport

26COEN 290 - Computer Graphics I

Defining a Perspective Projection

glFrustum (l, r, b, t, n, f);

−
−

−
−
+−

−
+

−

−
+

−

0100

00

00

00

2)(

2

2

nf
nf

nf
fn

bt
bt

bt
n

lr
lr

lr
n

27COEN 290 - Computer Graphics I

Defining a Perspective Projection (cont.)

gluPerspective (fovy, aspect, n, f);

• then useglFrustum ()

rl

aspecttr

tb

nt fovy

−=
⋅=

−=
⋅=)tan(2

■ ■

■ ■10

28COEN 290 - Computer Graphics I

Clipping in 3D

■ Projections transforms make clipping easy

■ Use your favorite algorithm

■ Clipping region well defined

wzw

wyw

wxw

≥≥−
≥≥−
≥≥−

29COEN 290 - Computer Graphics I

Normalizing Projected Coordinates

■ w is a scaling factor

■ Perspective divide
• divide each coordinate byw

• maps into NDC’s

What about z?

1
w
z

w
y
w
x

