Evening’s Goals

» Discuss types of algebraic curves and
surfaces

» Develop an understanding of curve basis
and blending functions

» Introduce Non-Uniform Rational B-Splines
* also known a?NURBS

Problem #1

» We want to create a curve (surface) which
passes throughs set of data points
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= We want to represent a curve (surface) for
modelingobjects
¢ compact form
« easy to share and manipulate
« doesn’t necessarily pass through points

.
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= Interpolating
 curve passes through points
« useful of scientific visualization and data
analysis
= Approximating
« curve’s shape controlled by points
« useful for geometric modeling

O
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= We'll generally usgparametriccubic
polynomials
« easy to work with
* nice continuity properties

p(u) = ¢, +gu+cu’+cu’

:ZS:CIui
i=0
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= Compute values based oparameter
« parameter generally defined over a limited
space
« for our examples, letu [ [0,1]

= For example

f(u) = (cos@ru) sin(2mu))

&
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= Enough data points to determine
coefficients
« four points required for a cubic curve

= For a smooth curve, want to match
 continuity
« derivatives

= Good news is that this has all been figured

out
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= We can identify curve types by their
geometry matrix
« another 4x4 matrix

= Used to define the polynomial coefficients
for a curvesblending functions

&
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= We can use thimterpolating geometry
matrix to determine coefficients

= Given four points in n-dimensional space

compute

g 1 0 0 0 YFP
&| |-55 9 -45 1 |p
g, 9 -225 18 -45|p,
g

-45 135 -135 45 @‘
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= We can rewrite things a little
p(u) =U-ecC U=(1 u u? u3)
c=M,p

p(u)=d+(M,p)

=b(u)+ P P
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= Computing static coefficients is alright, but
we’d like a more general approach

= Recast the problem to finding simple
polynomials which can be used as
coefficients

JOEYION
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= Here are the blending functions for the
interpolation curve
b, (u) =1-5.5u +9u* - 4.5u°
b, (u) =9u-225u* +135u°
b, (u) = —4.5u+18u%> -135u°
b,(u) =1u-4.5u* + 4.50°

L
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Blending Functions for the Interpolation case

125
l 4
0.75 ——b0(u)
05 1 ——b1(u)
0.25 1 —b2(u)
0 A ——b3(u)
-0.25 1
0.5
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0.00
0.09
0.18
0.27
0.36
0.45
0.54
0.63
0.72
0.81
0.90
0.99

= Interpolating curves have their problems
« need both data values and coefficients to share
« hard to control curvature (derivatives)

» Like a less data dependent solution

L
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= Control the shape of the curve by
positioningcontrol points
= Multiples types available
* Bezier
« B-Splines
* NURBS (Non-Uniform Rational B-Splines)
» Also available for surfaces

L
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» Developed by a car designer at Renault
= Advantages
« curve contained taonvex hull PR
¢ easy to manipulate
« easy torender
= Disadvantages

< bad continuity at endpoints
— tough to join multiple Bezier splines

L
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= Bezier geometry matrix

1 0 0 O

-3 3 0 0
M, =

3 -6 3 O

-1 3 -31

et
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= Bezier blending functions are a special set
of called theBernstein Polynomials
« basis of OpenGL’s curve evaluators

bYW =| -

L
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= B-Splines provide the one thing which
Bezier curves don't -- continuity of
derivatives

= However, they're more difficult to model
with
« curve doesn't intersect any of the control

vertices
@

N
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= Like all the splines we've seen, the curve is
only defined over four control points

= How do we match the curve’s derivatives?

"

L
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= B-Spline Geometry Matrix

1 4 1 O
1-3 0 3 0
Mg =€
3 -6 3 0
-1 3 -31
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= Notice something about the blending
functions 3
> b(u)=10
i=0
= Additionally, note that
b,(0) =by (1)
b,(0) =b,(2)
b,(0) =by(@) &

= The blending functions for B-splines form a
basisset.
* The “B” in B-spline is for “basis”

= The basis functions.for B-splines comes
from the following recursion relation

BY(U) = 5 BU) + et BEE(W)

U+g-1 Uk U+ ~Uga1

1 y<usu
0 u) = k k+1
B {0 otherwise
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= Evaluate the polynomial explicitly

p(u) = ¢, +Cu+cu” +cu’®

float px( float u ) {
float v = c[0].x;
v += c[1].x * u;
v += c[2].x * pow( u, 2 );
v += ¢[3].x * pow( u, 3 );
return v;

: &
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= That's about the worst way you can
compute a polynomial
« very inefficient
—pow( u, n);

= This is better, but still not great

float px( float u ) {
float v = c[0].x;
v += c[1].x * u;
v += c[2].x * u*uy;
Vv += c[3].x * u*u*u;
return v;

} S ——

L

= We do a lot more work than necessary
» computingu? andu3 is wasteful

u=ull
u=uDm
=ufum)

L
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= Rewrite the polynomial

p(u) = ¢, +u +cu® +cu’
=, +ulc, +u(c, +cu))

float px( float u ) {
return c[0].x +
u*(c[1].x +

u*(c[2].x +
u*c[3].x)); ‘
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glBegin(  GL_LINE_STRIP );
for (u=0;u<=1 u+=du)

glVertex2f( px(u), py(u) );
glEnd();

» Even with Horner's Method, this isn't the
best way to render

¢ equal sized steps in parameter doesn’t
necessarily mean equal sized steps in world

space (

COEN 290 - Computer Graphics | .

» Use subdivision and recursion to render
curves better

= Bezier curves subdivide easily

p=1(p+p)
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= Three subdivision steps required
m=3(p+p) Pi=3(p+p) P=3(p.+p)
p=3(m+p) p=4(p+p)

py=2(p;+p))
=1(p, +3p,+3p,+ p,)

&
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void drawCurve( Point p[] ) {
if (length( p ) < MAX_LENGTH )
draw( p );

Point
Point
Point
Point
Point
Point

drawCurve(

= 0.5%( p[0] + p[1] );
= 0.5%( p[1] + p[2] );
= 0.5%( p[2] + p[3] );
0.5% pOl + pl2 );
0.5%( p12 + pl3);
= 0.5% p012 + p123 );
p[0], pO1, p012, m );

drawCurve( m, p123, p23, p[3] );
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