
Scripting Practices in Complex Systems Management

Eser Kandogan, Paul P. Maglio, Eben M. Haber John H. Bailey

IBM Almaden Research Center CA

{eser, pmaglio, ehaber}@us.ibm.com, john.bailey@ca.com

Abstract

System administrators are end-users too. And as

end-users, they develop tools, create web pages, write

command-line scripts, use spreadsheets, and repurpose

existing tools. In short, they engage in end-user

programming activities in support of their systems

management work. We examined system administrator

practices in software tool development, operations,

and maintenance based on ethnographic field studies

at service delivery centers and data centers across the

United States. Our findings suggest that software

practices were mostly informal and collaborative and

mixed within formal change processes; tool

development and debugging were interleaved with tool

use and maintenance as they interacted with live

systems; and the complexity of large-scale systems and

the risks involved in changing live and critical systems

put increased demands on system administrators. We

argue that system administrators might benefit from

certain software engineering methodologies such as

agile software development and software modeling.

1. Introduction
System administrators design, configure,

troubleshoot, and maintain complex computer systems

(including database management systems, web servers,

and application servers), distributed across networks,

and built on complex architectures and topologies

designed by multiple vendors [1,3]. Yet system

administrators are end-users, too [5]. They conduct

their work using several vendor-supplied tools or

develop their own tools. A recent survey suggests that

37.5% of system administrators earned a bachelor’s

degree in a relevant field whereas 80% of them claim

to have developed much of their system administration

skills on-the-job [8]. They are clearly not professional

software developers. They develop software tools that

they use in their work. In fact, they are at once end-

users, builders, and repairers, who rely on their

technical, social, and organizational skills to conduct

work.

Since 2002, we have been conducting ethnographic

field studies of system administrators. The main

purpose of our studies was to examine system

administration practices to understand underlying cost-

factors of labor-intensive IT services delivery work.

Profitability was a significant concern among IT

service providers and we set out to study how

productivity could be improved by changing practices

and processes, and by developing technology and

automation.

We studied more than six sites, including large

corporate service delivery centers, university

computing centers, and government labs in a total of 16

visits. In the course of these studies, we found end-user

programming to be pervasive throughout system

administration work. As end-users, system

administrators developed tools, created web pages,

wrote command-line scripts, used spreadsheets, and

repurposed existing tools in support of systems

management tasks, such as system monitoring, backup

and recovery, database configuration, storage design,

and inventory management. Simply put, they engaged

in end-user programming activities to improve their

own productivity.

System administrators, like other software end-

users, usually lack professional software development

training and experience. However, they oftendevelop

their own tools using various scripting languages that

they have learned on the job with the help of more

experienced colleagues and through self-study. System

administrators often share their scripts with colleagues,

who in turn modify and adapt them to their particular

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage

and that copies bear this notice and the full citation on the first page.

To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

ACM CHIMIT’09, November 7-8, 2009, Baltimore, Maryland, USA.

Copyright 2009 ACM 1-60558-572-7/09/11…$10.00.

9

task, thus reinforcing the learning cycle [9]. Unlike

most other software end-users, however, they tend to be

very technically oriented and have deep knowledge of

IT software applications and infrastructures. Although

systems administrators become quite skilled at

developing scripts, as in other end-user developed

software, errors were prevalent[6]. In fact, problems

with error messages and handling were particularly

acute in both home-grown and vendor tools, with as

much as 25% of a system administrator’s time spent

following blind alleys suggested by poorly constructed

and unclear messages, often the result of the sheer

complexity of systems managed [10].

Though there has been considerable work on

empowering end-users in general to develop software

to support their tasks, there are still significant barriers

in effective use of languages, libraries, and

environments [11]. Researchers are exploring new

paradigms, which examine the practice from the end-

user software engineering perspective [12]. The

fundamental question asked is whether it is possible to

bring the benefits of rigorous software engineering

methodologies to end users [13].

In this paper, we consider this question of whether

and how to bring software engineering methods to

system administrators, particularly in the light of the

software practices of system administrators based on

our field studies. We argue that introducing some

software engineering methodologies into the field may

help, but that the context of system administration work

needs to be taken into account. In particular, given the

complex, risky, collaborative, dynamic, and reactive

nature of system administration work, a systematic

approach to software development may not be ideal or

even possible. Yet there is a potential to develop

solutions that carefully consider system administrators’

relationship to the systems they manage – in

environments where design, implementation, testing,

and maintenance of software artifacts are tightly

integrated and offer incremental, collaborative software

development.

2. Ethnography of System Administration
We conducted a series of ethnographic field studies

in IT service delivery organizations over the course of

five years. Our study methods included naturalistic

observations, in-situ interviews, surveys, and diary

studies. In 16 site visits, we observed and interviewed

more than 30 system administrators and others in large

corporate, university, and government service delivery

centers and data centers across the United States. We

observed the work practices of system administrators,

including security, database, web, storage, and

operating system administrators and data center

operators as they unfolded in their natural settings [1].

Two researchers participated in each observation,

which lasted three to five days. One of the researchers

followed a system administrator as he or she conducted

work in the office, attended meetings, etc. recording

interactions with the computer systems and activities

with others on video. The other researcher took notes

and engaged with the system administrator by

conducting an initial background interview, and asking

occasional questions during observation. We asked

participants to speak aloud while working, to the extent

possible without interrupting their work. At the end of

each day, we asked questions to clarify what we

observed during the day. Additionally, we collected

physical and electronic materials and took pictures of

some of the artifacts in their work environment.

Field studies offer insights into work that cannot be

found in focus groups, lab studies, or surveys alone

(see [14]). When work is examined in context, it

becomes clear that people work creatively with

technology to support their practices flexibly and

adaptively—though systems are often designed

inflexibly, people make do, naturally working around

limitations and built-in constraints [15].

Here, we report a single case study where we

examined aspects of the work of database

administrators as it related to end-user software

development. Though we have space only for one such

case, it is representative of many of the practices in the

field we observed through our multi-year study,

including practices such as planning and rehearsal,

incremental and multi-perspective verification,

progressive task performance with multiple scripts, and

pair-wise collaboration. While data from only one case

study is presented here, conclusions are derived from

many other case studies.

3. A Case Study: “It’s a Rehearsal”
In Fall 2002, we visited a large corporate data

center where we spent three days observing database

administrators as they worked in teams. The site

employed more than 5000 people providing various IT

services, including data management.

Christine and Mike worked as database

administrators and their responsibilities included

installation and configuration of database systems,

monitoring system performance and capacity, and

performance analysis and tuning, depending on the

particular database technology used and on the needs

of customers. Likewise computer and software

infrastructure requirements were driven by customers

and could be unique to a specific customer.

10

Step Who Action (directory /dba/work/tblmove) Start Dura. Day actual

1 Hillary Offline backup with SAP down after 6:00 5hr Sat

2 Hillary Create new tables (prefixed with QCM) and insert data

db2 + c -tvf crttables.ddt -z crttables.out

11:30 3.5hr Sat

3 Hillary Drop indexes and constraints on original tables

db2 -tvf dropindexes.ddl -z dropindexes.out

15:30 2.5hr Sat

… …

7 Hillary Page/call Patrick

8 Patrick Test access to the table by listing its contents in transaction

SE16

23:00 4hrs Sat

9 Patrick Check whether the table has been accessed Sat

10 Patrick/Hillary Update table statistics

Runstats.sh > runstats.out

 Sat

11 Patrick Check consistency of the tables Sat

12 Patrick/Hillary Execute script to recreate views associated with tables

db2 –tvf crtviews.dll –z crtviews.out

 Sat

… …

16 Hillary Offline backup 4:45 5hr Sun

 Finish 10:00

Figure 1. Part of the one-page summary instructions for the table-move operation: For each of the 16 steps

the instructions included information about the responsible system administrator, specifics of the instructions

such as commands to run, start times, duration, and day of the operation.

Below we report our observations of Christine and

Mike as they rehearsed a “table move” operation using

IBM DB2© data management software on AIX for

SAP© application tables. They worked side-by-side for

hours as they practiced moving large data and index

tables from a tablespace that was reaching the

maximum space limitation to two new tablespaces.

This was a new customer account for Christine while

Mike had provided services for this customer in the

past and was in the process of bringing Christine up-to-

speed and turning the account over to her. Though

Christine was an experienced database administrator,

this was an important customer, and both wanted the

transition to be as smooth as possible. Mike was always

there physically in her office or virtually from his office

or at home helping Christine throughout the operation.

3.1 “It is easier to back out if you catch it early

on”
Rehearsing critical operations was a common

practice among database administrators. They often

would test their procedures on multiple servers, such as

sandbox, test, and consolidation servers, which

increasingly resembled the system configuration and

data of the production servers. Only when procedures

were tested progressively through all these servers,

would they propagate changes to production servers in

a highly restricted manner and in the limited time

allotted.

The table-move operation consisted of several steps

for creating new tables, including dropping old

indexes, creating new indexes, renaming new tables,

among others. Christine inherited a twenty-page

document with detailed instructions and sample scripts

from Hillary, who had performed this operation in the

past. She also kept a one-page summary of the plan

close-by (see Figure 1). This summary not only

included tasks to perform but also had start times and

duration to help them figure out how long tasks take

and whether they would fit in the allotted change

windows. While some of the instructions were fairly

detailed showing all the parameters of the commands,

some were fairly high level descriptions of the tasks.

Some were just verification steps without much detail,

some were purely coordination steps since often such

large operations had tasks performed by several

administrators collaboratively.

The twenty-page documentation was fairly detailed.

There were specific instructions on how to produce the

individual statements; for example, she ran the

db2look command to find which columns to use in

the table-create statement. It also included several notes

capturing others’ experiences, such as typical execution

times, suggestions, explanations, and mandatory to-dos.

In all, Christine wrote seven scripts. Rather than

creating one script that did everything, she preferred to

have multiple scripts, as it helped her identify and

isolate problems more easily. In fact, there were

11

explicit steps where she needed to check status, verify

changes, etc. (see Figure 1):

Christine: You have to check the output after each

step in case there is any error. It is easier to back

out if you catch it early on.

The first script Christine wrote was to create tables.

Using the sample script code, she customized it for her

specific environment by changing server names and

such. Over time, she and others developed common

scripting practices that helped them to avoid some

problems in advance. Mike explained that inheriting

these (sample) scripts essentially passed on these

practices:

Mike: If the index has special characters then index

name has to be in double quotes. If not, it fails.

What the heck? Now, it is better to put the index in

double-quotes, just for the heck of it. Some of the

headaches that we ran into before, are [now] in the

procedures for the script.

As Christine created her scripts, also put her name

as the file suffix. She explained that this helped her

easily identify her scripts among all others in the script

directory:

Christine: I have .christine at the end. On the other

system, where I created [the scripts], there were

tons of scripts. So, that is how I identify scripts that

are mine, when I ftp them over here.

Indeed, the directory /sapdbawork/dbawork/

tbmove/move2002 had all the scripts she created. The

file structure was arranged such that all the SAP-related

scripts were in /sapdbawork/dbawork/, and from

there, they created subdirectories for specific tasks,

such as the table-move (e.g. tbmove), and the

specific instances of these tasks (e.g. move2002).

Christine had a window of ten-hours to complete the

task. She told us that once scripts were validated on

consolidation servers, doing it on the production

servers would be fairly straightforward:

Christine: I will just do a global change from LC0

[consolidation server] to LP0 [production server].

That will be it. That is one of the reasons why we

are actually doing it on consolidation before

production because 99.99% it is the same script. By

the time it gets to production, your scripts are

pretty much set in stone.

Production work was scheduled for the following

day, Saturday. During the consolidation work,

Christine was also on-call. In fact, she was called

frequently in to phone meetings, responded to issues on

other accounts, and consulted others – all as part of her

on-call duties.

3.1.1 Analysis

In this part of the story, we observed Christine’s efforts

to prepare for a deployment of a configuration change

to database tablespaces. Particularly interesting were

the practices around planning and rehearsal. They

developed, deployed, and tested code progressively on

multiple systems. This was not surprising given the

highly risky nature of the work – any mistakes made on

the actual production systems would be seen by the

customer, and perhaps cost the customer time or

money. In this case, rehearsal was practiced very

carefully and diligently across the organization, and

there was the infrastructure and organizational support.

As Christine said, by the time it gets to the production

servers, you expect everything to run smoothly. To

support this, they developed coding practices where it

was easy to promote a script from one system to the

other by only changing a single line in the code, where

a connection to a database server was established.

Collaboration was important during design and

development. We saw Christine using Hillary’s

documentation extensively. She not only used sample

script code from the documentation but also relied on

notes describing other experiences, optional steps,

warnings, and expected execution times for each step.

By using the documentation, Christine leveraged the

community to improve the quality of her work. For

example, Mike explained that fixes for some of the

problems they had in the past were built into the

sample scripts in the documentation. When Christine

inherited the document, all these community best

practices came along with it.

 The documentation also contained instructions on

how to produce the final scripts with all the necessary

contextualization. This approach was preferred over

writing the scripts sufficiently abstract to pull in the

necessary parameters and context. They opted to

hardcode such parameters into the scripts either

manually or by running specific commands. We think

that this was because of the transient nature of the

scripts used, even though the outline of scripts was

reused many times.

Hillary’s documentation called for creating several

scripts for each step of the procedure. The practice of

splitting a procedure into multiple scripts was aimed at

controlling and containing errors such that problems

12

were monitored by people and corrected before

proceeding. First, it was often very difficult to build

error checking into scripts. It was particularly difficult

in the case of database administration, as the sheer

complexity of the tasks and the systems significantly

increased the number and type of errors to be handled.

Moreover error handling may differ based on the type

of error. We saw some errors reported but ignored,

some that required restart, some that were easy to fix,

and some even expected. It was just difficult to predict

and build appropriate error-handling logic into the

script code.

Yet the issue here was not that simple error

checking cannot be built into scripts easily. It was more

than that. As we saw in Christine’s instructions, every

now and then there were verification steps, such as

checking consistency of tables, performing application

tests, etc. These checks could only be carried out by

people who could judge whether things were

proceeding correctly by interpreting output potentially

from multiple perspectives within the context of the

task. It seems to us that these people-steps were put

there intentionally to try to increase reliability.

We did not observe any formal software

maintenance activity, such as using a software version

control tool. If they did any maintenance it was fairly

informal as we saw Christine putting her name as a file

suffix so that she could identify her scripts among

many others. However, they did use a shared repository

of scripts, and the organization of the script repository

reflected substantial attention given to this activity, as

scripts were carefully categorized by customer, task,

year, etc. Maintenance of the documentation was on the

other hand substantial in that documentation was used

over and over by many people, reflecting experiences,

conventions and best practices used in the organization.

We believe that maintenance of the documentation was

given substantially more attention as opposed to

maintenance of the source code due to the expected

lifetime of the scripts. Scripts were for the most part

very customized, with lots of hard-coded configuration

and were intended only for transient use.

In summary, we saw several practices related to

maintenance and verification activities:

� Planning and rehearsing with progressive

verification of scripts on multiple production-

like systems.

� Reliance on verification by people rather than

building error checking into code.

� Abstraction of large procedures into multiple

verifiable steps.

� Maintenance of documentation rather than

maintenance of source code

� Use of documents to communicate and share

knowledge of practices, processes, and scripts.

3.2 Sometimes you think too much into it

Having written the scripts, Christine was now ready

to begin work on consolidation systems using the

instructions in the implementation plan. The first script

she needed to execute was for creating the tables. She

carefully typed the following command, as documented

in the plan:

nohup db2 +c -tvf crttable.ddl.

christine –z crttables.out.christine

In typing this, she diligently copied and pasted the

script name by first getting a directory listing. In fact,

she practiced copy-and-paste almost religiously, so

much that she would not type a table name or script

name without getting a list of some sort to copy from.

Just before submitting this command, she held back

for a couple of minutes to examine it once again.

Looking over Christine’s shoulder at screen, Mike

suggested that she run the script in the background, and

she added an “&” to the end of the line to do that. After

another minute or so, Christine hit Enter. And she

immediately got an error. Mike was quick to identify

the cause:

Mike: DB2 started, or…? I know you said you

stopped SAP but did you start DB2?

Christine was unaware that the script to bring down

SAP (the specific database application she was working

with) had also stopped DB2 (the database system

underlying the application). So, she started DB2 and

reran the script. This time there were no immediate

errors. Mike suggested that she open another window

to check progress continuously by “tailing” the output

from the script, effectively spying on the output that

was being written to a file.

Examining the script output, Christine noticed a

problem with the script just in the first few lines. The

first table creation had failed giving errors, but the

second table creation was proceeding normally.

Christine opened the script and Mike again was quick

to see what was wrong:

Mike: Your connect [command] needs a semicolon

at the end.

Christine: But it is working for... that is the only

connect I have right?

13

In the script, the connect command did not end with

a semicolon, which resulted in a syntax error. The

interpreter reported the error, but it did not stop

running the script; it continued to execute the

remaining commands. So, the command to create the

second table began executing normally, but because the

system had not connected to the appropriate database

server, the second table was being created in the wrong

place. Christine quickly fixed the script by adding a

semicolon. However, she could not stop the script from

running because the system was making a massive

update. In fact, it continued for more than half an hour

because the table was so big.

Finally, when they were able to interact with the

system again, Mike suggested dropping (that is,

removing) this incorrectly created table. But the drop-

table command also returned an error:

SQL0204N "SAPR3.QCMVBAP" is an

undefined name. SQLSTATE=42704

Thinking that the error had to do with incorrect

syntax, she tried several alternatives, including putting

the table name in quotes, removing the schema name,

and more. None fixed it. After a while, Mike realized

what was going on:

Mike: It backed out the whole thing, cause we

never committed it. We don't have to drop anything.

That is why the command didn't work because it

couldn’t find the stupid thing.

[…] Sometimes you think too much into it.

They were back to where they had been 45 minutes

earlier. Christine reran the script, again carefully noting

the start time. And this time, she added the –s option so

that the system would abort script execution when it

returns an error:

nohup db2 +c -stvf
crttable.ddl.christine –z
crttables.out. christine

Another 30 minutes passed and finally the first table

in the script was created. Christine noted the execution

time of the script on paper:

Christine: I will put that in the notebook. So, if

someone else does this in six months or a year, I

will have some basis to go by.

While waiting for the second table to be created, she

decided to update the documentation. While working

on the documentation she noticed that it took Mike

about an hour and half last time around, roughly 26GB

per hour, and she estimated how long it would take this

time. In the documentation, she replaced all

occurrences of command options “-tvf” with “-stvf” in

the document. She also made a note that DB2 needs to

be restarted after the SAP-stop script, which was

omitted when she read the document preparing for this

task. Throughout the procedure, we observed her edit

the document with lessons learned while waiting for

scripts to execute.

As Christine executed these scripts, Mike left the

office briefly but he continued to observe her progress.

In fact, he noticed that something was missing from the

“create index” script and so he prepared another script

to be run before the next step. He realized that the

output from the first script did not contain the usual

error message they got when they altered primary keys;

that is, normally, there was a specific error message

whenever they changed the way an index worked, but

up to this point, he had not seen this message, so he

concluded that they had missed a critical step. Back in

her office, he said that she should run his new “primary

key” script:

Mike: You see I have never seen the message.

When you create the index, you get the message

about the primary key. I remember seeing the

primary key when you create the index… Basically

I created the primarykey.ddl script. That should be

two minutes…

Afterwards, Mike left to go home but promised to

be back online as soon as possible. Sure enough, before

the “create index” script was done, he was back online.

When the primary key script completed, Christine sent

Mike an instant message to make sure she was seeing

the error message he expected:

Christine: is that the normal message
you were talking about? sql0598w

Mike: that error message is a good
message.

Having verified the error message, Christine

recorded the times for this step and moved on to the

remaining steps. She was almost ready for the big day,

Saturday, the day of production server operations. In an

instant message to Mike, she said that given her

experience so far, she should have enough time to

complete the change on the production systems on

Saturday.

14

3.2.1 Analysis

As Christine and Mike began the configuration

process in the consolidation server, they had several

errors to deal with. This was okay – after all they

purposefully institutionalized the practice of staged

deployment by verifying scripts on a series of servers

to detect errors as early as possible.

Pair-wise extreme collaboration worked pretty well,

too, particularly when steps were missing in the

documentation. Mike had experience with these set of

instructions and knew expected behavior of the system.

So, he was always quick to notice potential pitfalls or

warn Christine in advance. When errors did occur he

stepped in and quickly put Christine on the right track

by recommending certain actions, such as restarting the

database after the first step. In fact, throughout the

deployment, we saw Christine and Mike sit side by side

and perform tasks together or collaborate over instant

messaging. There was considerable verification:

Christine would type a command and wait for Mike to

comment on it. Mike would check up on her from his

office and from home, examining script output. Faced

with risky and lengthy operations, this style of

collaboration ensured reliability by adding a second

pair of eyes. We think this practice provides the same

sort of benefits as pair programming [16].

Some of the errors Christine faced were simple

typos that accrued during the script development.

Despite meticulous attention paid during development,

errors were nevertheless inevitable. A simple missing

semicolon led to unexpected behavior in which the

script continued to execute, confusing Christine and

Mike about the state of the system for some time as

they tried to delete a non-existent table. They

misinterpreted the errors, attributing them to possible

syntactic issues rather than the real semantic issue: that

the database server did not commit the changes.

Clearly, some of the error messages did not convey the

system state very well. Part of the problem was that

their systems were really complicated, and so any

individual message lacked the overall context of what

they were trying to do.

Part of the problem was that cryptic server,

database, and table names were confusing and led to

errors throughout. To lessen the chance of introducing

typos, Christine used copy-and-paste rigorously as she

wrote and executed scripts and passed parameters to

commands.

Not all errors they dealt with were bad either. Some

were “good errors,” as Mike called them, in that lack of

one indicated a missed step. He not only told her of the

missing error message, but he also wrote a script fix the

problem, and asked her to run it.

Beyond script reliability, rehearsal also had

significant operational importance in establishing how

much time would be needed for particular operations.

Christine frequently checked the time to make sure that

work would fit in the window allotted for the

production changes. Documentation was an essential

resource for her not only because it contained

information about expected running times but also it

contained traces of the deliberate work of past

administrators, their experiences, suggestions, and

warnings, effectively creating collective know-how

within the organization. And Christine did her part by

contributing back to the organization reporting her own

experience, for instance, documenting –s option to

force a stop on error, and recording her own execution

times.

In summary, we observed several practices related

to test, development and execution activities:

� Pair-wise extreme collaboration when testing and

executing scripts.

� Iterative collaboration during script and procedure

development by working through

documentation.

3.3 I always give myself more time…

While the table move operation was going on

Christine was asked to perform a database backup for a

particular customer database during a teleconference as

part of her on-call duties. She quickly wrote down the

specifics on a piece of paper: an online backup for

today and an offline backup with tape archive for

Saturday. An online backup archived data from a

production server while the applications continued to

execute. An offline backup would take down the server,

stopping all other applications. Thus, it was undesirable

to perform an offline backup during regular hours, as

that limited application availability.

As she was setting up an online backup, Christine

needed to get in touch with Larry about the offline tape

backup for the next day. Mike said that he would to

remind Larry about the offline backup. To configure

the online backup, Christine began editing the crontab

file. Cron was a time-based job scheduling service to

automatically execute recurring commands, specified in

the crontab file on separate lines. Upon saving the

crontab file the cron service would automatically

schedule these jobs for execution at the specified times.

As they typically used crontab for performing

periodic backups, among other things, the crontab file

already contained correctly formatted entries for

15

backup jobs. She just needed to find the right entry for

an online backup and set the start time appropriately.

Because the crontab file was really long, she

searched for the particular backup entry by entering

/ofl using the vi editor. She uncommented

the entry on that line and changed the schedule,

00 16 0 11 * /dba/lib/db.control

ofltape.cntl > /dba/logs/db.out 2>&1

which would execute the backup script at 16:00, just

about a minute later. To be sure, she checked the date a

few times using the !date command without existing

the vi editor. Then she typed !wq to save the crontab

file but waited for about three seconds before finally

hitting “Enter”, making sure things were correct. Once

saved, only a few seconds later, Christine reacted rather

nervously:

Christine: Oh, shoot!!

Mike: What??

Christine: I think I got the wrong one.

Mike: No!!

Christine: Oh, no.

Mike: No . It was online.

Christine: I think, I did

Mike: That is okay…

She immediately tried to revert the crontab file back

to its original state. While doing that she was visibly in

a kind of panic. She had trouble saving the file, had

several typos, executed numerous invalid commands,

one after another. Finally, having reverted the file, she

checked the process list to see if the backup process

was listed, meaning that it had already started and took

down the applications. Seeing that there were no

backup processes in the list, she was relieved:

Christine: I always give myself more time.

Mike: Just page, do change directory, dba/backup

Following Mike’s advice, she changed the directory

to see if the backup process made any new entries in

the log file, indicating that the backup had actually

started. Fortunately, the last modified date of the

backup log file was old.

This time, Christine was lucky. The offline backup

process had not started. She told us that she usually

gave herself more than one minute before issuing such

commands to allow time to catch such errors.

 3.3.1 Analysis

Errors occur even with the best of intentions. In this

case, Christine used crontab precisely to avoid errors –

yet she created one when she picked the wrong line to

execute. Nevertheless, Christine did her best to avoid

errors in the first place. We saw her holding off hitting

“Enter” to submit a command, reviewing the

commands several times. Likewise, her use of crontab

to submit commands with additional delay gave her one

more chance to abort a potentially erroneous command,

as she wound up doing in this case. Repurposing

crontab beyond recurring tasks also worked as a cheat

sheet so that she did not have to remember the syntax

of the commands each time she needed to execute a

similar task. Because most commands were already

listed in the crontab file she only needed to change the

date and time. The last working example was always in

the crontab file. In this case we saw her check the date

several times and wait a few more seconds to try to

make sure her changes were correct. Though there was

still an error, she did her job appropriately nonetheless,

taking time to go over commands again and again.

When things did go wrong, she verified the state of

the backup script in multiple ways. First, she corrected

the crontab immediately. Then she verified whether the

backup process was running by examining the process

listing. Finally, upon Mike’s suggestion she also

checked to see if any log entries had been produced.

This practice of verifying system state from multiple

perspectives was common, particularly as tasks got

more complex, risky, and long-running (also see 17]).

We also see pair-wise collaboration here providing

a level of psychological comfort. When Christine

became anxious after realizing she had started the

wrong backup, Mike was there to try to calm her down.

In summary, we observed these script execution and

verification practices:

� Using a job scheduling service list to (re)execute

common scripts to avoid re-parameterization.

� Delayed execution of common scripts via a job

scheduler for verification purposes.

� Multi-perspective verification of script execution

and system state.

4. Discussion
Script development and use practices of system

administrators were informal and collaborative, and

combined effectively with formal processes of system

administration (see also [4]). Development, debugging,

use, and maintenance of scripts, tools, and processes

were interleaved as system administrators worked with

systems on multiple servers. The size and complexity

of the systems themselves, combined with the risks

associated with failing to make changes on time or

making mistakes that brought live customer systems

16

down, put substantial demands on system

administrators, affecting error handling and

verification, among other things.

In particular, we observed a number of practices that

were developed to support scripting and related

activities:

(1) Pair-wise extreme collaboration when testing

and executing scripts.

(2) Iterative collaboration in script and procedure

development

(3) Planning and rehearsing with progressive

verification of scripts on multiple increasingly

production-like systems.

(4) Reliance on verification by people rather than

building error checking into code.

(5) Abstraction of large procedures into multiple

verifiable steps.

(6) Use of documents to communicate and share

knowledge on practices, processes, and

scripts.

(7) Multi-perspective verification of script

execution and system state.

Regarding the question of whether rigorous software

engineering practice would help end-user programmers

like system administrators, the answer is likely – if the

context of the work of the end-user is appropriately

taken into account. Among several techniques in

software engineering practice, such as software

modeling, formal specification, and formal verification,

most emphasize early stages of software development.

First off, one needs to assess whether upfront design

time would pay off when in practice, the focus is on

error recovery rather than on error prevention. In fact,

even in error recovery, the goal is to bring the systems

back in some form, even at the expense of pulling back

the changes. Delays often increase costs, and reduce

productivity in businesses where the margins are

already low.

In IT service delivery, there is no clear release cycle

for system configuration and maintenance work. A

large part of the work is reactive, done in response to

an emerging issue, such as external workload demands

or internal system errors. Design time is clearly limited.

In this context, rigorous software engineering

techniques that require precise understanding of system

model and behavior would put a significant burden on

the system administrators, as systems are significantly

complex and arguably no-one person has full

understanding of the complete system behavior [4].

Furthermore, the required behavior is often hard to

capture and communicate. And so it was not surprising

to see high-level descriptions of system behavior in the

form of documents being used heavily in practice.

Though the descriptions are vague, they rely on experts

to understand and provide the necessary

implementation details.

Rigorous software engineering does not only mean

precise specifications but also abstract specifications.

And this may offer some opportunities. Abstractions

focus on the essential aspects of system behavior

without being bogged down with the irrelevant details.

Given the complexity of systems techniques, precise

descriptions is often out of the question. High-level

understanding of system model is what is needed at

first, followed by quickly narrowing the problem and

finally a deep-dive into specifics, to troubleshoot

systems effectively. We believe UML [7] descriptions

of systems that break down systems into conceptual

components, if made available by vendors, would

benefit system administrators significantly, in script

testing and development. Likewise, if standard UML-

like descriptions are adopted by the system

administrator community, it may potentially increase

collaborative script development.

Software development methodologies such as

Extreme Programming [16] and Agile Software

Development [2] may also be effectively applied in the

service delivery context, given their focus on short

development cycles and iterative development with

requirements evolving rapidly in collaboration within

the organization, and their ability to respond quickly to

changes and potential to improve productivity. These

methodologies seem to fit well with system

administration, with its collaborative, reactive working

conditions and where productivity is primary concern.

5. Conclusion
For system administrators – like other end-users – a

traditional software development methods are neither

ideal nor possible. In system administration, system

size and complexity and the risk of errors and

downtime set the context and influence script

development and related activities significantly.

System administrators write small programs under

severe technical and business constraints, and they

need to produce reliable programs that interact with

live systems. Yet we believe there are practices from

software engineering that can be borrowed,

particularly, agile software development that support

collaborative and incremental software development,

and software modeling approaches that describe

multiple perspectives of the system.

17

6. References
[1] Barrett, R., Kandogan, E., Maglio, P. P., Haber, E. M.,

Takayama, L. A., and Prabaker, M. 2004. Field studies of

computer system administrators: analysis of system

management tools and practices. In Proceedings of the 2004

ACM Conference on Computer Supported Cooperative Work

[2] Cockburn, A., Agile software development, Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, 2002

[3] Lentz, J. L. and Bleizeffer, T. M. 2007. IT ecosystems:

evolved complexity and unintelligent design. In Proceedings

of the 2007 Symposium on Computer Human interaction for

the Management of information Technology (Cambridge,

Massachusetts, March 30 - 31, 2007). CHIMIT '07. ACM,

New York, NY, 6.

[4] Bailey, J., Kandogan, E., Haber, E., and Maglio, P. P.

2007. Activity-based management of IT service delivery. In

Proceedings of the 2007 Symposium on Computer Human

interaction For the Management of information Technology

(Cambridge, Massachusetts, March 30 - 31, 2007). CHIMIT

'07. ACM, New York, NY, 5

[5] Barrett, R., Chen, M., & Maglio, P. P. System

Administrators are Users, Too: Designing Workspaces for

Managing Internet-scale Systems, CHI 2003 Workshop.

[6] Brown, A. B. 2004. Oops! Coping with human error in IT

systems. Queue 2, 8 (Nov. 2004), 34-41.

[7] Jacobson, I. Booch, G., Rumbaugh, J. (1998). The

Unified Software Development Process. Addison Wesley

Longman

[8] Kolstad, R., SAGE Salary Survey, 2004--2005,

http://www.sage.org/salsurv.

[9] Nardi, B. A. 1993. A Small Matter of Programming:

Perspectives on End User Computing. MIT Press,

Cambridge, MA.

[10] Maglio, P. P. and Kandogan, E. 2004. Error messages:

what's the problem?. Queue 2, 8 (Nov. 2004), 50-55.

[11] Ko, A. J. and Myers, B. A. 2005. Human factors

affecting dependability in end-user programming. In

Proceedings of the First Workshop on End-User Software

Engineering (St. Louis, Missouri, May 21 - 21, 2005).

WEUSE I. ACM, New York, NY, 1-4.

[12] First workshop on End-user software engineering,

International Conference on Software Engineering, 2005.

[13] Myers, B. A. and Burnett, M. 2004. End users creating

effective software. In CHI '04 Extended Abstracts on Human

Factors in Computing Systems (Vienna, Austria, April 24 -

29, 2004). CHI '04. ACM, New York, NY, 1592-1593.

[14] Luff, P., Hindmarsh, J., Heath, C. (1999). Workplace

Studies: Recovering Work Practice and Information System

Design. Cambridge, MA: Cambridge University Press.

[15] Suchman, L. (1987). Plans and Situated Actions: The

Problem of Human-Machine Communication. Cambridge:

Cambridge University Press.

[16] Beck, K. 2000 Extreme Programming Explained:

Embrace Change. Addison-Wesley Longman Pub. Co., Inc.

[17] Velasquez, N. F. and Durcikova, A. 2008. Sysadmins

and the need for verification information. In Proceedings of

the 2nd ACM Symposium on Computer Human interaction

For Management of information Technology (San Diego,

California, November 14 - 15, 2008). CHIMIT '08. ACM,

New York, NY, 1-8.

18

