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This whitepaper complements LinuxWorld 2000 San Jose Tutorial HL with an introduction to OpenGL
(a portable 2D and 3D rendering API) and the APIs which allow OpenGL acceleration under Linux,
including some high-level toolkits which ease the use of OpenGL from an application developer
perspective. 
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Introduction

LinuxWorld 2000 San Jose Tutorial HL, Linux 3D Hardware Acceleration, presents OpenGL 3D
acceleration for Linux from the point of view of both application developers and OpenGL driver
implementors. Presenters well known in the industry draw on their past experience with OpenGL on
Silicon Graphics’ Irix, Microsoft Windows, and Linux to provide details about the use and design of
OpenGL.

Speakers

David Blythe is a member of the technical staff at RouteFree, Inc. Prior to this, David was chief
engineer in the advanced graphics group at SGI. David contributed to the development of the
RealityEngine and InfiniteReality graphics systems while at Silicon Graphics. He has worked
extensively on implementations of the OpenGL graphics library, OpenGL extension specifications, and
high-level toolkits built on top of OpenGL. His other interests include large-scale system design and
interactive photorealism. David has been a course presenter at SIGGRAPH ’96-’2000 as well as other
technical forums. Prior to joining SGI, David was a visualization scientist at the Ontario Centre for
Large Scale Computation and a lecturer at the University of Toronto. David received both a B.S. and



M.S. degree in computer science from the University of Toronto.

Brad Grantham is a Senior Software Engineer at VA Linux Systems in Sunnyvale, California. Brad
specializes in 3D graphics and OpenGL, and previously worked at Silicon Graphics on object oriented
graphics toolkits. Prior to SGI, Brad worked at Tenon Intersystems on a Macintosh UNIX variant and at
Recognition Research on image processing. Brad is an Adjunct Lecturer at Santa Clara University and
has presented at the SIGGRAPH computer graphics conference for the past three years.

Brian Paul works for Precision Insight, Inc. where he contributes to the development of infrastructure
and drivers for 3D hardware acceleration on Linux. He’s probably best known for Mesa: his open source
implementation of the OpenGL API. Brian has been involved in 3D software development for over 10
years and holds BS and MS degrees in computer science from the University of Wisconsin. 

OpenGL under Linux

OpenGL is the industry standard 3D graphics API. OpenGL is available on most platforms from Silicon
Graphics InfiniteReality to Sun Workstations’ Creator3D to Hewlett Packard’s Visualize fx6 series, all
the way to a five hundred dollar commodity PC that can be bought at a computer superstore. OpenGL
1.2 supports the most common high-end features of graphics cards including multitexture, texture
automatic coordinate generation, and geometry and lighting acceleration. More advanced features are
easily exposable as OpenGL extensions either by an individual vendor or by the OpenGL architecture
Review board. The OpenGL API is not tied to an individual window or operating system and is thus
very portable.

OpenGL is used for all types of 3D visualization as well as 2D illustration. Many games available under
Windows 98 and most under Linux use OpenGL, including Quake III: Arena, Baldur’s Gate II, and
Descent 3. OpenGL has long been the choice of API for Scientific Visualization and CAD software.
Many animation and visualization packages go so far as to implement their user interface using OpenGL
because it allows them to write platform-independent graphics code.

Linux has already established itself as a powerful platform for internet services and computing and is
now starting to compete with Windows as a desktop environment for applications. Only time will tell
whether Linux can match or even supplant Windows, but support for games and other 3D applications is
a prerequisite. OpenGL has been available in an unaccelerated form on Linux for several years, both as a
port of Silicon Graphics’ OpenGL and as Mesa, a multiplatform open source implementation of the
OpenGL 1.2 API.

In the last year and a half, the list of 3D acclerators supported under Linux has grown from one to nearly
all of the accelerators supported available for PCs. Matrox, 3dfx, 3Dlabs, S3, Evans and Sutherland, and
NVIDIA are all supported in some form of hardware-accelerated Mesa or OpenGL.

Some implementations of the OpenGL API under Linux provide advanced features rivaling those of
Windows OpenGL implementations, including multitexture, 3D texture, geometry acceleration, and
AGP buffers for DMA for rapid transfer of commands to hardware. Benchmarking by Utah-GLX
developers (admittedly biased) shows Linux Mesa and OpenGL to approach or even exceed the
performance of OpenGL under Windows 98. (see utah-glx-dev mailing list messages from the 21st of
January, 2000 and the 30th of January, 2000 )



This tutorial provides an introduction to the use and implementation of the OpenGL API on Linux, and
should be valuable both to beginning OpenGL application developers wishing to use Linux and to
engineers curious about the foundations of 3D direct rendering using the OpenGL API.

Brief Introduction to OpenGL

This tutorial is not intended to contain a detailed introduction to the features of OpenGL itself. This
tutorial instead touches only on the basics of OpenGL to provide a brief introduction. For an in-depth
introduction to OpenGL, see the OpenGL Programming Guide (also known as the "Red Book", most
recently edited by Dave Shreiner), which introduces the reader to each of the OpenGL features in turn
and how to use each one. A detailed technical specification for OpenGL is available at www.opengl.org.

OpenGL is an immediate mode 2D and 3D graphics library. An application calls commands in the
OpenGL library to change state including colors, lighting, and textures, and to draw primitives. A
snippet of code in OpenGL to draw a red lit triangle can look like the following:

    GLfloat lightPos[4] = [0.707f, 0.707f, 0.0f, 0.0f];
    GLfloat redColor[4] = [1.0f, 0.0f, 0.0f, 1.0f];

    glEnable(GL_LIGHTING);
    glEnable(GL_LIGHT0);
    glLightfv(GL_LIGHT0, GL_POSITION, lightPos);

    glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, redColor);

    glBegin(GL_TRIANGLES);
        glNormal3f(0, 0, 1);
        glVertex3f(-1, 1, 0);

        glNormal3f(0, 0, 1);
        glVertex3f(-1, -1, 0);

        glNormal3f(0, 0, 1);
        glVertex3f(1, -1, 0);
    glEnd();

Each application thread has a current openGL context, which contains drawing state and directs drawing
commands to a window. Each of the functions above and most of the functions in OpenGL change the
context’s state directly and execute immediately from the viewpoint of the application. Thus OpenGL is
called an immediate mode API. The OpenGL machine can be broken roughly into two parts:
transformation and rasterization.

Geometric primitives in OpenGL are specified using 1, 2 or 3 dimensional vertices, for example with
glVertex3f or with glInterleavedArrays. OpenGL maintains a stack of matrices for the modelview
transformation, so that vertices can be modeled in one space, then rotate, scaled, and translated into
another, and finally transformed into the camera space, or eye space. Because it’s a stack, applications
can easily apply hierarchical transformations through glMultMatrix, glPushMatrix, and glPopMatrix.
Then vertices are lit using an (emperically derived) mathematical model including spotlight effects and
surface shininess, often provided using glLightfv. The top of the projection matrix stack projects 3D
points on to the 2D window.

Once primitives like triangles and lines are lit, projected to the screen and clipped, they are



scan-converted. The colors produced at vertices are usually interpolated across the pixels inside the
vertex, and this can produce a convincing illusion of surface curvature. A rectangle of pixels (texture)
can be applied across the primitive to simulate changes in color across a surface or to be used in
(potentially complex) pixel operations, using glTexImage and glTexEnv. A small screen aligned stipple
pattern can be applied to mask pixels out, and there is a stencil buffer which can be used as a more
general masking or counting register. The distance of the primitive from the eye is also interpolated and
can be compared to the depth buffer to see if it each pixel not "hidden". Pixels from a primitive
( fragments) can be blended with the color values already in the frame buffer.

OpenGL also provides functions for reading images from (glReadPixels) and storing images in
(glDrawPixels) the framebuffer directly, although many implementations optimize this operation poorly.
Images can be converted from or into different pixel formats, and row strides can allow use of a subset
of the image. A color lookup can also be applied to color values from the image. Some implementations
support the OpenGL 1.2 Imaging subset which allows a rich set of operations including lookups,
histograms, and convolution among others.

All OpenGL state can be queried using some variant of glGet, and sets of state variables can be pushed
and popped. A sequence of OpenGL commands can also be stored in a display list for execution later by
glCallList; implementations may choose to compile those commands into a more efficient form for
execution.

OpenGL also has some interesting but little used features for returning transformed and clipped vertices
to the application and detecting when primitives are rasterized within a rectangular window (selection;
usually used to detect which scene objects are under a mouse click).

OpenGL does not provide an audio API, a mechanism for playing back video, object-oriented scene
manipulation, or windowing or operating system abstractions. OpenGL in general was designed to
provide a flexible but detailed programming abstraction for a class of machines that draw raster
graphics.

GLU, the OpenGL Utility Library

Because OpenGL is designed to be a clean hardware abstraction layer, it does not provide some obvious
facilities for convenience. GLU provides functions for creating a viewing transformation from simple
3D data about the camera position and the object being viewed, drawing curved NURBS or quadric
surfaces, and downloading texture data that is not a power of two on a side and filling in the data that
OpenGL needs to perform texture antialiasing. 

OpenGL and the X Window System

Since OpenGL does not provide a windowing or event API, a separate specification and API details how
OpenGL is tied to a specific windowing system. For Linux and the X Window System, this API is GLX.
(For Windows 98/NT, it’s called WGL, and for MacOS it’s called AGL.)

Many developers opt to avoid the complexities of GLX and use a portable toolkit which does
encapsulate windowing and event systems, like GLUT (mentioned later in these notes). The remainder
of this section presents a brief introduction to OpenGL and GLX.



GLX is actually used to describe several aspects of the process of rendering with OpenGL on X. In
addition to being the API used to connect OpenGL with X, it is also the protocol used to transmit
OpenGL commands over the X wire (socket or UNIX domain pipe). It is also used as the name of an
open source package that provides hardware acceleration for OpenGL programs using Mesa and GLX,
as described later.

Because the GLX protocol is communicated over the X wire, applications can run on one machine and
direct their 3D rendering output to a completely different machine. Most commonly, though, OpenGL
applications run on the same machine as the display. An OpenGL library can optionally detect this
situation and send OpenGL commands directly to the hardware, known as direct rendering. This saves
bandwidth and conversion overhead, but requires a great detail of synchronization between the X server
and other direct OpenGL clients. Direct rendering in different implementations of the OpenGL API
under Linux are described later.

An application requests an X visual (or searches for one itself) that matches its requirements for
OpenGL bit-depths, doublebuffering, and other framebuffer attributes. An OpenGL context is created
and bound to an X Windows drawable (usually a window). Here’s an example of some code that
illustrates this process:

    static int attributeList[] = {
        GLX_RGBA,
        GLX_DOUBLEBUFFER,
        GLX_DEPTH_SIZE, 16,
        GLX_RED_SIZE, 5,
        GLX_GREEN_SIZE, 5,
        GLX_BLUE_SIZE, 5,
        None
    };

    XVisualInfo *visInfo =
        glXChooseVisual(display, screen, attributeList);

    /* Application opens X Window that matches visual info */

    context = glXCreateContext(display, visInfo, 0, GL_TRUE);

    glXMakeCurrent(display, window, context);

    /* Application renders a bunch of 3D data */

    glXSwapBuffers(display, drawable);

An application might issue some costly OpenGL operations and then issue X operations as well in a
separate region, because OpenGL may be highly pipelined. Because OpenGL rendering is often direct,
however, GLX provides functions allowing an application to force either OpenGL or X drawing to
complete before proceeding with the other in an overlapping screen region, for example for 3D scenes
annotated with X widgets.

GLX also allows for OpenGL rendering in drawables that do not require on-screen real estate, or X
Pixmaps, but this operation is limited; the newer GLX 1.3 specification offers pbuffers which can be
used as offscreen rendering areas that don’t require X semantics and whose contents can be copied to
other drawables or texture memory.



GLX of course provides some more functionality than is presented here. Clients can flush the rendering
pipeline, request that X fonts be turned into GL display lists for text rendering, move data between
contexts, and query extensions to GLX. Users desiring a detailed guide to using GLX and OpenGL
should consult Mark Kilgard’s book Programming OpenGL for the X Window System.

Toolkits

GLUT

GLUT, by Mark Kilgard, (not to be mistaken with GLU) encapsulates window system and event
processing in a simple toolkit. GLUT provides facilities to open windows, subwindows, draw simple
geometric shapes, draw text, handle pop-up menus, and invoke application callbacks on mouse and
keyboard events.

Some application developers use GLUT to rapidly prototype their OpenGL application, because of
GLUT’s simplicity. Others use it as the basis of their released application because of its portability. Our
experience has been that most production-quality interactive OpenGL applications use GLX (or WGL)
either directly or through their own proprietary portability layer in order to have more control, but
GLUT is an excellent toolkit for whipping together demos and samples.

Here’s an example of how an application might set up a GLUT window and a mouse and some standard
callbacks:

    glutInit(&argc, argv);
    glutInitWindowSize(512,512);
    glutInitDisplayString("samples rgb double depth");
    glutCreateWindow("window title goes here");
    glutDisplayFunc(redrawFunc);
    glutKeyboardFunc(keyboardFunc);
    glutMotionFunc(motionFunc);
    glutMouseFunc(buttonFunc);
    glutReshapeFunc(reshapeFunc);

    /* initialize OpenGL here */

    glutMainLoop();

Here’s an example button callback: 

    void button(int b, int state, int x, int y)
    {
        if(button == 0) {
            if(state == 0)
                doLeftButtonDownAction();
            else
                doLeftButtonUpAction();
        }
    }

More information on the functions and features of GLUT can be found at the OpenGL web site,
www.opengl.org.



Simple DirectMedia Layer (SDL)

Sam Lantinga has written a portable media API called Simple DirectMedia Layer for applications
needing audio, input, and framebuffer access on multiple platforms. SDL is used largely for games but
can be used to author general multimedia applications that can run on Linux, MacOS, BeOS, and
Windows. Here’s a snippet of code that creates an SDL window and draws using OpenGL, borrowed
from the OpenGL tutorials available at http://www.libsdl.org/opengl/intro.html.

    /* Initialize SDL for video output */
    SDL_Init(SDL_INIT_VIDEO);
    SDL_SetVideoMode(640, 480, 0, SDL_OPENGL);
  
    /* Set the title bar in environments that support it */
    SDL_WM_SetCaption("SDL Sample", NULL);
  
    /* initialize OpenGL here */
  
    /* Loop, drawing and checking events */
    done = 0;
    while ( ! done ) {

        /* Draw OpenGL scene here */

        SDL_Event event;
        while ( SDL_PollEvent(&event) ) {
            if ( event.type == SDL_QUIT )
                done = 1;
            if ( event.type == SDL_KEYDOWN ) {
                if ( event.key.keysym.sym == SDLK_ESCAPE )
                    done = 1;
            }
        }
    }
    SDL_Quit();

SDL provides access to framebuffer memory (surfaces) with optional conversion, for blitting images to
the screen. The SMPEG mpeg player uses SDL to display its video frames. Events from the windowing
system are provided to the application from keyboard, mouse, and window operations. SDL provides a
thread creation API, plus a semaphore facility for thread synchronization, and event processing in SDL
is thread-safe. SDL also provides an API for playing 8-audio and 16-bit audio samples and for
controlling audio playback from a CD.

SDL is available at http://www.devolution.com/~slouken/SDL/ and is available in a stable production
version 1.08.

Open Inventor

Inventor was developed at Silicon Graphics and provides an object-oriented C++ interface for graphics
objects and system abstractions. Inventor provides both a run-time API and a file format, and is
considered a scene graph, because it stores 3D scene data in a directed graph configuration. In Inventor,
state from objects affects the state of other objects "below" and "to the right", thus hierarchies of
geometric transformation (rotation, scale, and rotation) can be layered together to create complex scenes.
Inventor is used by many in visualization because of its ease-of-use and power.



Inventor provides an extremely rich assortment of tools including scene primitives, window and event
management, reading and writing files, and scene operation. Here’s a sample of some code that creates a
very simple scene graph and displays it in a window, borrowed from The Inventor Mentor by Josie
Wernecke:

    Widget myWindow = SoXt::init(argv[0]);

    // Create a new scene graph root node
    SoSeparator *root = new SoSeparator;
    root->ref();

    SoPerspectiveCamera *myCamera = new SoPerspectiveCamera;
    root->addChild(myCamera);
    root->addChild(new SoDirectionalLight);
 
    // Add a red material; all subsequent siblings will be affected by
    // this red material until the next material
    SoMaterial *myMaterial = new SoMaterial;
    myMaterial->diffuseColor.setValue(1.0, 0.0, 0.0);   // Red
    root->addChild(myMaterial);

    // Add a cone.
    root->addChild(new SoCone);
 
    // Create a renderArea in which to see our scene graph.
    // The render area will appear within the main window.
    SoXtRenderArea *myRenderArea = new SoXtRenderArea(myWindow);
 
    // Make myCamera see everything.
    myCamera->viewAll(root, myRenderArea->getViewportRegion());
 
    // Put our scene in myRenderArea, change the title
    myRenderArea->setSceneGraph(root);
    myRenderArea->setTitle("Hello Cone 1");
    myRenderArea->show();
 
    // Map the window to the screen and give control to Inventor
    SoXt::show(myWindow);  // Display main window
    SoXt::mainLoop();      // Main Inventor event loop

An Inventor scene graph can be made of a variety of different types of nodes, including geometric
shapes, texture data, material parameters, cameras, and object manipulators. Some shape nodes are
simple predefined shapes like SoCone and SoIndexedFaceSet (Inventor scene objects are prefixed with
So to differentiate them from application-specific data types). Property nodes change rendering state and
include surface appearance changes like SoMaterial and SoTexture2, geometric transformation changes
like SoTransform, and other nodes modifying interpretation of shape data like SoComplexity.

There are many more nodes in Inventor than are mentioned here. A quick reference to the nodes in Open
Inventor 2.0 is available at http://www.sgi.com/Technology/Inventor/PostScript/quickRef.ps.

Inventor actions traverse the scene graph, accumulating, pushing, and popping state. The
SoGLRenderAction accumulates render state, like material values and geometric transformations, and
renders each shape it encounters.

Each node in Inventor is made up of fields. For example, the shininess parameter in an SoMaterial is a
field of type MFFloat and thus contains one or more floating point numbers. Each field can be



connected to another field, so that when the first field is changed, the second field changes to the same
value. Fields may also be connected to engines, which change the field value in some way. Connections
and engines are very powerful and can be used to make complex behaviors without application callbacks
or intervention.

Inventor also contains a set of manipulators, nodes that a user can interact with to change rotations,
scales, and translations or material parameters, like SoTabBox, which provides visible "tabs" the user
can click on and drag to change the translation or scale provided to subsequent nodes in the scene graph.

Inventor provides a series of prebuilt user-interface widgets. SoXt allows an application to integrate
Inventor operations and events with Xt. The SoXtExaminerViewer presents the user with a number of
convenient buttons and menus for viewing a scene, including changing the rendering style and moving
and rotating a scene.

Inventor specifies its own file format which directly maps to the scene graph data. Thus Inventor scene
data can be stored verbatim in a file and read in at a later time to recreate nodes, connections and
engines. The Inventor file format was used as the basis for the VRML virtual reality web file format.

Template Graphics (www.tgs.com) sells a port of Inventor version 2 to Linux. Coin, at www.coin3d.org,
is a 3D toolkit that uses the Inventor 2.0 API, available in an open source release restricted to
noncommercial use and as a commercial product.

IRIS Performer

Performer is another C++ object-oriented scene graph toolkit developed at Silicon Graphics. Performer
tends to run more towards high-performance applications rather than ease-of-use; it is targetted at
maximizing OpenGL rendering performance through the use of multiple processors for view-frustum
culling, sorting primitives to reduce OpenGL state changes, and transferring vertex data using optimized
unrolled loops.

Performer provides a full-featured toolkit for building high-performance visualization and simulation
programs including scene primitives and a generalized file reader/writer facility, and allows the
application a great deal of flexibility regarding how multiprocessing is configured. Here’s a simplified
excerpt from the hello.C sample program:

    // Initialize and configure IRIS Performer
    pfInit();
    
    pfMultiprocess( PFMP_DEFAULT );                     
    
    pfConfig();
    
    // Look for files in PFPATH, ".", and  "/usr/share/Performer/data"
    pfFilePath(".:/usr/share/Performer/data:../../../../data");
    
    // Create a scene
    pfScene *scene = new pfScene;
    
    // Create a lit scene pfGeoState for the scene
    pfGeoState *gstate = new pfGeoState;
    gstate->setMode(PFSTATE_ENLIGHTING, PF_ON);
    // attach the pfGeoState to the scene



    scene->setGState(gstate);
    scene->addChild(new pfLightSource);
    
    // Create 3D message and place in scene.
    pfString *str = new pfString;
    pfFont *fnt = pfdLoadFont_type1("Times-Elfin",PFDFONT_EXTRUDED);

    str->setFont(fnt);
    str->setMode(PFSTR_JUSTIFY, PFSTR_MIDDLE);
    str->setColor(1.0f, 0.0f, 0.8f, 1.0f);
    str->setString("Welcome to IRIS Performer");
    str->flatten();
    
    pfText *text = new pfText;
    text->addString(str);
    scene->addChild(text);
    
    // Create and configure a pfPipe and pfChannel.
    pfPipe *pipe = pfGetPipe(0);
    pfChannel *chan = new pfChannel(pipe);
    chan->setFOV(60.0f, 0.0f);
    chan->setScene(scene);
    
    // Determine extent of scene’s geometry.
    pfSphere bsphere;
    text->getBound(&bsphere);
    chan->setNearFar(1.0f, 10.0f*bsphere.radius);
    
    // Spin text for 15 seconds.
    double startTime = pfGetTime();
    double t;
    while ((t = pfGetTime() - startTime) < 15.0f)
    {
        pfCoord    view;
        float      s, c;
        
        // Compute new view position, rotating around text.
        pfSinCos(45.0f*t, &s, &c);
        view.hpr.set(45.0f*t, -5.0f, 0.0f);
        view.xyz.set(
                     2.0f * bsphere.radius * s,
                     -2.0f * bsphere.radius * c,
                     0.3f * bsphere.radius);
        chan->setView(view.xyz, view.hpr);
        
        // Initiate cull/draw processing for this frame.
        pfFrame();
    }
    
    // Terminate parallel processes and exit.
    pfExit();
    

As you can see, Performer allows an application a great deal of control over the scene and processing of
the scene, but sometimes at the expense of usability for the beginner.

Like Inventor, Performer scenes are made of nodes in a directed graph, except that changes like rotations
and scales are inherited from top to bottom and not from left to right. Parent nodes do something to their
children like grouping them together (pfGroup), applying a geometric transformation, choosing one



child out of many, or cycling through child nodes. Leaf nodes are usually pfGeodes, which group
together pfGeoSet objects. A pfGeoSet contains a representation of geometric data like a triangle strip or
lines and a set of state to apply to the geometry. Performer has traversals to cull the scene graph to only
the visible objects, sort objects by graphics state changes, and to draw the scene, but usually these are all
invoked by pfFrame, which kicks off multiple processes for operating on the scene graph.

Performer contains a large number of facilities for managing scene complexity and scene rate, like level
of detail groups (pfLOD) which contain geometric objects of different complexities which Performer
chooses based on the visual size of the object (distant models need less detail) and the current estimate
of frame timing. Billboards are pictures which represent objects and are rotated to face the viewer as the
viewer moves. Applications may get a detailed set of statistics to use for planning scene geometry
through pfFrameStats.

Performer has a facility called libpfdb for providing readers and writers for files of any format; readers
that already exist include Inventor, LightScape, and AutoCAD file formats. Most loaders use the libpfdu
database utility library to help construct scene graphs and optimize them for efficient traversal.

The libpfu utility library contains various facilities for input handling, GUI widgets drawn in OpenGL,
following a geometric path for walkthroughs, and texture loading, among several others.

Performer 2.3 binaries are available for Linux from Silicon Graphics’ web site at www.sgi.com.
Although Performer takes advantage of features in IRIX that are not available in Linux and other
facilities are not yet ported to IRIX (Performer does not run now in multiple processors under Linux),
we expect to see a release soon which supports Linux multiprocessing and graphics cards more fully.


