LinuxWorld 2000 in San Jose

Tutorial HL:
Linux 3D Hardware Acceleration

Brad Grantham (gr ant ham@al i nux. com

July 2000

This whitepaper complements LinuxWorld 2000 San Jose Tutorial HL with an introduction to OpenGL
(a portable 2D and 3D rendering API) and the APIs which allow OpenGL acceleration under Linux,
including some high-level toolkits which ease the use of OpenGL from an application devel oper

per spective.

Copyright
Copyright © 2000 by Brad Grantham. All Rights Reserved.

Permission is granted to make and distribute verbatim copies of this document provided the cof
notice and this permission notice are preserved on all copies.

Permission to modify this document may be granted to those who get approval from Brad Gran

| ntr oduction

LinuxWorld 2000 San Jose Tutorial HLinux 3D Hardware Acceleratigipresents OpenGL 3D
acceleration for Linux from the point of view of both application developers and OpenGL driver
implementors. Presenters well known in the industry draw on their past experience with OpenG
Silicon Graphics’ Irix, Microsoft Windows, and Linux to provide details about the use and desigr
OpenGL.

Speakers

David Blythe is a member of the technical staff at RouteFree, Inc. Prior to this, David was chief
engineer in the advanced graphics group at SGI. David contributed to the development of the

RealityEngine and InfiniteReality graphics systems while at Silicon Graphics. He has worked

extensively on implementations of the OpenGL graphics library, OpenGL extension specificatio
high-level toolkits built on top of OpenGL. His other interests include large-scale system design
interactive photorealism. David has been a course presenter at SIGGRAPH '96-'2000 as well a:
technical forums. Prior to joining SGI, David was a visualization scientist at the Ontario Centre f
Large Scale Computation and a lecturer at the University of Toronto. David received both a B.S

M.S. degree in computer science from the University of Toronto.

Brad Grantham is a Senior Software Engineer at VA Linux Systems in Sunnyvale, California. B
specializes in 3D graphics and OpenGL, and previously worked at Silicon Graphics on object ol
graphics toolkits. Prior to SGI, Brad worked at Tenon Intersystems on a Macintosh UNIX varian
Recognition Research on image processing. Brad is an Adjunct Lecturer at Santa Clara Univer:
has presented at the SIGGRAPH computer graphics conference for the past three years.

Brian Paul works for Precision Insight, Inc. where he contributes to the development of infrastru
and drivers for 3D hardware acceleration on Linux. He’s probably best known for Mesa: his ope
implementation of the OpenGL API. Brian has been involved in 3D software development for o\
years and holds BS and MS degrees in computer science from the University of Wisconsin.

OpenGL under Linux

OpenGL isthe industry standard 3D graphics API. OpenGL is available on most platforms from ¢
Graphics InfiniteReality to Sun Workstations’ Creator3D to Hewlett Packard’s Visualize fx6 seri¢
the way to a five hundred dollar commodity PC that can be bought at a computer superstore. O
1.2 supports the most common high-end features of graphics cards including multitexture, textu
automatic coordinate generation, and geometry and lighting acceleration. More advanced featu
easily exposable as OpenGL extensions either by an individual vendor or by the OpenGL archit
Review board. The OpenGL API is not tied to an individual window or operating system and is t
very portable.

OpenGL is used for all types of 3D visualization as well as 2D illustration. Many games availabl
Windows 98 and most under Linux use OpenGL, including Quake Ill: Arena, Baldur's Gate Il, al
Descent 3. OpenGL has long been the choice of API for Scientific Visualization and CAD softw:
Many animation and visualization packages go so far as to implement their user interface using
because it allows them to write platform-independent graphics code.

Linux has already established itself as a powerful platform for internet services and computing ¢
now starting to compete with Windows as a desktop environment for applications. Only time wil
whether Linux can match or even supplant Windows, but support for games and other 3D appli
a prerequisite. OpenGL has been available in an unaccelerated form on Linux for several years
port of Silicon Graphics’ OpenGL and as Mesa, a multiplatform open source implementation of
OpenGL 1.2 API.

In the last year and a half, the list of 3D acclerators supported under Linux has grown from one
all of the accelerators supported available for PCs. Matrox, 3dfx, 3Dlabs, S3, Evans and Suther
NVIDIA are all supported in some form of hardware-accelerated Mesa or OpenGL.

Some implementations of the OpenGL API under Linux provide advanced features rivaling thos
Windows OpenGL implementations, including multitexture, 3D texture, geometry acceleration, ¢
AGP buffers for DMA for rapid transfer of commands to hardware. Benchmarking by Utah-GLX
developers (admittedly biased) shows Linux Mesa and OpenGL to approach or even exceed th
performance of OpenGL under Windows 98. (see utah-glx-dev mailing list messages fadrst thie
January, 200@nd the30th of January, 2000

This tutorial provides an introduction to the use and implementation of the OpenGL API on Linu
should be valuable both to beginning OpenGL application developers wishing to use Linux and
engineers curious about the foundations of 3D direct rendering using the OpenGL API.

Brief Introduction to OpenGL

This tutorial is not intended to contain a detailed introduction to the features of OpenGL itself. T
tutorial instead touches only on the basics of OpenGL to provide a brief introduction. For an in-c
introduction to OpenGL, see ti@penGL Programming Guide (also known as the "Red Book", most
recently edited by Dave Shreiner), which introduces the reader to each of the OpenGL features
and how to use each one. A detailed technical specification for OpenGL is availaie.apengl.org

OpenGL is an immediate mode 2D and 3D graphics library. An application calls commands in tl
OpenGL library to change state including colors, lighting, and textures, and to draw primitives. /
snippet of code in OpenGL to draw a red lit triangle can look like the following:

G.fl oat |ightPos[4]
G.fl oat redCol or[4]

[0.707f, 0.707f, 0.0f, 0.0f];
[1.0f, 0.0f, 0.0f, 1.0f]:

gl Enabl e(G_LI GHTI NG ;
gl Enabl e(G._LI GHTO) ;
gl Lightfv(G_LI GHTO, G._POCSI TION, |ightPos);

gl Materi al fv(G._FRONT_AND BACK, GL_AMBI ENT_AND DI FFUSE, redCol or);

gl Begi n(GL_TRI ANGLES) ;
gl Nornal 3f (0, O, 1);
gl Vertex3f (-1, 1, 0);

gl Normal 3f (0, 0, 1);
gl Vertex3f (-1, -1, 0);

gl Nor nal 3f (0, 0, 1);
gl Vertex3f(1, -1, 0);
gl End() ;

Each application thread has a current open@itext, which contains drawing state and directs drav
commands to a window. Each of the functions above and most of the functions in OpenGL chat
context’s state directly and execute immediately from the viewpoint of the application. Thus Ops
called anmmediate mode API. The OpenGL machine can be broken roughly into two parts:
transformation and rasterization.

Geometric primitives in OpenGL are specified using 1, 2 or 3 dimensional vertices, for example
glVertex3f or with glinterleavedArrays. OpenGL maintains a stack of matrices footetview
transformation, so that vertices can be modeled in one space, then rotate, scaled, and translate
another, and finally transformed into the camera spa@ye@pace. Because it's a stack, applicatior
can easily apply hierarchical transformations through glMultMatrix, glPushMatrix, and glPopMat
Then vertices are lit using an (emperically derived) mathematical model including spotlight effec
surface shininess, often provided using glLightfv. The top optbiection matrix stack projects 3D
points on to the 2D window.

Once primitives like triangles and lines are lit, projected to the screen and clipped, they are

scan-converted. The colors produced at vertices are usually interpolated across the pixels insid
vertex, and this can produce a convincing illusion of surface curvature. A rectangle oftpxkais)(
can be applied across the primitive to simulate changes in color across a surface or to be used
(potentially complex) pixel operations, using glTexlImage and glTexEnv. A small screen atigpk=
pattern can be applied to mask pixels out, and theratés@l buffer which can be used as a more
general masking or counting register. The distance of the primitive from the eye is also interpole
can be compared to tldepth buffer to see if it each pixel not "hidden". Pixels from a primitive
(fragments) can be blended with the color values already in the frame buffer.

OpenGL also provides functions for reading images from (glIReadPixels) and storing images in

(glDrawPixels) the framebuffer directly, although many implementations optimize this operation
Images can be converted from or into different pixel formats, and row strides can allow use of a
of the image. A color lookup can also be applied to color values from the image. Some impleme
support the OpenGL 1.2 Imaging subset which allows a rich set of operations including lookups
histograms, and convolution among others.

All OpenGL state can be queried using some variant of glGet, and sets of state variables can b
and popped. A sequence of OpenGL commands can also be stodksplayaist for execution later b
glCallList; implementations may choose to compile those commands into a more efficient form 1
execution.

OpenGL also has some interesting but little used features for returning transformed and clipped
to the application and detecting when primitives are rasterized within a rectangular wsa@éoto(;
usually used to detect which scene objects are under a mouse click).

OpenGL does not provide an audio API, a mechanism for playing back video, object-oriented st
manipulation, or windowing or operating system abstractions. OpenGL in general was designec
provide a flexible but detailed programming abstraction for a class of machines that draw raster
graphics.

GLU, the OpenGL Utility Library

Because OpenGL is designed to be a clean hardware abstraction layer, it does not provide sorr
facilities for convenience. GLU provides functions for creating a viewing transformation from sin
3D data about the camera position and the object being viewed, drawing curved NURBS or que
surfaces, and downloading texture data that is not a power of two on a side and filling in the dat
OpenGL needs to perform texture antialiasing.

OpenGL and the X Window System

Since OpenGL does not provide a windowing or event API, a separate specification and API de
OpenGL is tied to a specific windowing system. For Linux and the X Window System, this GEX.t
(For Windows 98/NT, it's calletVGL, and for MacOS it's calleAGL.)

Many developers opt to avoid the complexities of GLX and use a portable toolkit ddesh
encapsulate windowing and event systems, like GLUT (mentioned later in these notes). The rer
of this section presents a brief introduction to OpenGL and GLX.

GLX is actually used to describe several aspects of the process of rendering with OpenGL on X
addition to being the API used to connect OpenGL with X, it is also the protocol used to transmi
OpenGL commands over the X wire (socket or UNIX domain pipe). It is also used as the name
open source package that provides hardware acceleration for OpenGL programs using Mesa al
as described later.

Because the GLX protocol is communicated over the X wire, applications can run on one machi
direct their 3D rendering output to a completely different machine. Most commonly, though, Ops
applications run on the same machine as the display. An OpenGL library can optionally detect t
situation and send OpenGL commands directly to the hardware, knainecsendering. This saves
bandwidth and conversion overhead, but requires a great detail of synchronization between the
and other direct OpenGL clients. Direct rendering in different implementations of the OpenGL A
under Linux are described later.

An application requests an X visual (or searches for one itself) that matches its requirements fo
OpenGL bit-depths, doublebuffering, and other framebuffer attributes. An OpenGL context is cr
and bound to an X Windows drawable (usually a window). Here’s an example of some code the
illustrates this process:

static int attributeList[] = {
GLX_RGBA,
GLX_DOUBLEBUFFER
GLX_DEPTH_SI ZE, 186,

GLX_RED_SI ZE, 5,
GLX_GREEN_SI ZE, 5,
GLX_BLUE_SI ZE, 5,

None h

b

XVi sual I nfo *vislinfo =
gl XChooseVi sual (di spl ay, screen, attributeList);

/* Application opens X Wndow that matches visual info */
context = gl XCreat eCont ext (di splay, vislinfo, 0, G._TRUE)
gl XMakeCurrent (di spl ay, w ndow, context);

/* Application renders a bunch of 3D data */

gl XSwapBuf f er s(di spl ay, drawabl e);

An application might issue some costly OpenGL operations and then issue X operations as wel
separate region, because OpenGL may be highly pipelined. Because OpenGL rendering is ofte
however, GLX provides functions allowing an application to force either OpenGL or X drawing ti
complete before proceeding with the other in an overlapping screen region, for example for 3D
annotated with X widgets.

GLX also allows for OpenGL rendering in drawables that do not require on-screen real estate, ¢
Pixmaps, but this operation is limited; the newer GLX 1.3 specification qiberfters which can be
used as offscreen rendering areas that don’t require X semantics and whose contents can be c
other drawables or texture memory.

GLX of course provides some more functionality than is presented here. Clients can flush the re
pipeline, request that X fonts be turned into GL display lists for text rendering, move data betwe
contexts, and query extensions to GLX. Users desiring a detailed guide to using GLX and Oper
should consult Mark Kilgard’s bodRrogramming OpenGL for the X Window System.

Toolkits

GLUT

GLUT, by Mark Kilgard, (not to be mistaken with GLU) encapsulates window system and event
processing in a simple toolkit. GLUT provides facilities to open windows, subwindows, draw sirr
geometric shapes, draw text, handle pop-up menus, and invoke application callbacks on mouse
keyboard events.

Some application developers use GLUT to rapidly prototype their OpenGL application, because
GLUT’s simplicity. Others use it as the basis of their released application because of its portabil
experience has been that most production-quality interactive OpenGL applications use GLX (or
either directly or through their own proprietary portability layer in order to have more control, bu
GLUT is an excellent toolkit for whipping together demos and samples.

Here’s an example of how an application might set up a GLUT window and a mouse and some
callbacks:

glutlnit(&argc, argv);

gl ut I ni t WndowSi ze(512, 512);

glutinitDi splayString("sanples rgb doubl e depth");
gl ut Creat eW ndow("wi ndow title goes here");

gl ut Di spl ayFunc(redrawFunc);

gl ut Keyboar dFunc(keyboar dFunc) ;

gl ut Mot i onFunc(noti onFunc);

gl ut MouseFunc(butt onFunc);

gl ut ReshapeFunc(reshapeFunc) ;

/* initialize Open@ here */
gl ut Mai nLoop() ;

Here’s an example button callback:

void button(int b, int state, int x, int y)

i f(button == 0) {
if(state ==
doLef t Butt onDownAction();
el se
doLef t Butt onUpActi on();

}

More information on the functions and features of GLUT can be found at the OpenGL web site,
www.opengl.org

Simple DirectM edia Layer (SDL)

Sam Lantinga has written a portable media API c&laghle DirectMedia Layer for applications
needing audio, input, and framebuffer access on multiple platforms. SDL is used largely for gan
can be used to author general multimedia applications that can run on Linux, MacOS, BeQOS, ai
Windows. Here’s a snippet of code that creates an SDL window and draws using OpenGL, borr
from the OpenGL tutorials availablelatp://www.libsdl.org/opengl/intro.html

/* Initialize SDL for video output */
SDL_Init(SDL_I NI T_VIDEO);
SDL_Set Vi deoMbde (640, 480, 0, SDL_OPENG);

/* Set the title bar in environnents that support it */
SDL_WM Set Capti on("SDL Sanpl e", NULL);

/* initialize Qpen@ here */

/* Loop, drawi ng and checking events */
done = 0;
while (! done) {

/* Draw OpenGL scene here */

SDL_Event event;
while (SDL_Pol | Event (&vent)) {
if (event.type == SDL_QUIT)
done = 1;
if (event.type == SDL_KEYDOM) {
if (event.key.keysym sym == SDLK_ESCAPE)
done = 1,

}
}SDL_QJit();

SDL provides access to framebuffer memary faces) with optional conversion, for blitting images 1
the screen. The SMPEG mpeg player uses SDL to display its video frames. Events from the wit
system are provided to the application from keyboard, mouse, and window operations. SDL pro
thread creation API, plus a semaphore facility for thread synchronization, and event processing
is thread-safe. SDL also provides an API for playing 8-audio and 16-bit audio samples and for
controlling audio playback from a CD.

SDL is available alttp://www.devolution.com/~slouken/S@hA is available in a stable production
version 1.08.

Open Inventor

Inventor was developed at Silicon Graphics and provides an object-oriented C++ interface for g
objects and system abstractions. Inventor provides both a run-time API and a file format, and is
considered a scene graph, because it stores 3D scene data in a directed graph configuration. Ir
state from objects affects the state of other objects "below" and "to the right", thus hierarchies o
geometric transformation (rotation, scale, and rotation) can be layered together to create compl
Inventor is used by many in visualization because of its ease-of-use and power.

Inventor provides an extremely rich assortment of tools including scene primitives, window and
management, reading and writing files, and scene operation. Here’s a sample of some code the
very simple scene graph and displays it in a window, borrowed Traimventor Mentor by Josie
Wernecke:

W dget nmyWndow = SoXt::init(argv[0]);

/1 Create a new scene graph root node
SoSeparator *root = new SoSepar at or;
root->ref();

SoPer specti veCanera *myCanera = new SoPer specti veCaner a;
r oot - >addChi | d(nyCaner a) ;
r oot - >addChi | d(new SoDi recti onal Li ght);

/1 Add a red material; all subsequent siblings will be affected by
/1 this red material until the next material

SoMvaterial *nyMaterial = new SoMateri al;

nyMat eri al - >di f fuseCol or. setValue(1.0, 0.0, 0.0); /1 Red

root - >addChi I d(nmyMaterial);

/! Add a cone.
r oot - >addChi | d(new SoCone) ;

/1 Create a renderArea in which to see our scene graph.
/1 The render area will appear within the main w ndow.
SoXt Render Area *myRender Area = new SoXt Render Ar ea(nyW ndow) ;

/1 Make nyCanera see everything.
nyCaner a- >vi ewAl | (root, nyRender Area->get Vi ewport Region());

/1 Put our scene in nyRenderArea, change the title
nmyRender Ar ea- >set SceneG aph(root);

nyRender Area->set Titl e("Hell o Cone 1");
nyRender Ar ea- >show() ;

/1 Map the window to the screen and give control to Inventor
SoXt : : show(nyWndow); // Display main w ndow
SoXt : : mai nLoop() ; /1 Main Inventor event |oop

An Inventor scene graph can be made of a variety of different typesles including geometric
shapes, texture data, material parameters, cameras, and object manipulators. Some shape noc
simple predefined shapes like SoCone and SolndexedFaceSet (Inventor scene objects are pref
So to differentiate them from application-specific data types). Property nodes change rendering
include surface appearance changes like SoMaterial and SoTexture2, geometric transformatior
like SoTransform, and other nodes modifying interpretation of shape data like SoComplexity.

There are many more nodes in Inventor than are mentioned here. A quick reference to the node
Inventor 2.0 is available &ttp://www.sgi.com/Technology/Inventor/PostScript/quickRef.ps

Inventoractions traverse the scene graph, accumulating, pushing, and popping state. The
SoGLRenderAction accumulates render state, like material values and geometric transformatio
renders each shape it encounters.

Each node in Inventor is made upfadids. For example, thehininess parameter in an SoMaterial is i
field of type MFFloat and thus contains one or more floating point numbers. Each field can be

connected to another field, so that when the first field is changed, the second field changes to the
value. Fields may also be connecteérigines, which change the field value in some way. Connect
and engines are very powerful and can be used to make complex behaviors without application
or intervention.

Inventor also contains a setronipulators, nodes that a user can interact with to change rotations
scales, and translations or material parameters, like SoTabBox, which provides visible "tabs" th
can click on and drag to change the translation or scale provided to subsequent nodes in the sc

Inventor provides a series of prebuilt user-interface widgets. SoXt allows an application to integ
Inventor operations and events with Xt. The SoXtExaminerViewer presents the user with a num
convenient buttons and menus for viewing a scene, including changing the rendering style and
and rotating a scene.

Inventor specifies its own file format which directly maps to the scene graph data. Thus Invento
data can be stored verbatim in a file and read in at a later time to recreate nodes, connections ¢
engines. The Inventor file format was used as the basis for the VRML virtual reality web file forr

Template GraphicsMww.tgs.con) sells a port of Inventor version 2 to Linux. Coinpatw.coin3d.org
is a 3D toolkit that uses the Inventor 2.0 API, available in an open source release restricted to
noncommercial use and as a commercial product.

IRIS Performer

Performer is another C++ object-oriented scene graph toolkit developed at Silicon Graphics. Pe
tends to run more towards high-performance applications rather than ease-of-use; it is targettec
maximizing OpenGL rendering performance through the use of multiple processors for view-fru:
culling, sorting primitives to reduce OpenGL state changes, and transferring vertex data using c
unrolled loops.

Performer provides a full-featured toolkit for building high-performance visualization and simula
programs including scene primitives and a generalized file reader/writer facility, and allows the
application a great deal of flexibility regarding how multiprocessing is configured. Here’s a simp
excerpt from théel | 0. C sample program:

/1 Initialize and configure RIS Perforner
pflnit();

pf Mul ti process(PFVP_DEFAULT);
pf Config();

/1 Look for files in PFPATH, ".", and "/usr/share/Perforner/data"
pfFilePath(".:/usr/share/ Perforner/data:../../../../data");

/] Create a scene
pf Scene *scene = new pf Scene;

/1l Create a lit scene pfGeoState for the scene
pf CeoState *gstate = new pf CeoSt at e;

gst at e- >set Mode(PFSTATE_ENLI GHTI NG, PF_ON);

/1 attach the pfGeoState to the scene

scene- >set GSt at e(gstate);
scene- >addChi | d(new pf Li ght Sour ce) ;

/1 Create 3D nessage and place in scene.
pfString *str = new pfString;
pf Font *fnt = pfdLoadFont typel("Ti nes-Elfin", PFDFONT_EXTRUDED)

str->setFont (fnt);
str->set Mode(PFSTR_JUSTI FY, PFSTR_M DDLE)
str->setColor(1.0f, 0.0f, 0.8f, 1.0f);
str->setString("Wlcome to IRIS Performer");
str->flatten();

pf Text *text = new pf Text;
text->addString(str);
scene->addChi | d(text);

/1 Create and configure a pfPipe and pf Channel
pf Pi pe *pi pe = pfGetPi pe(0);

pf Channel *chan = new pf Channel (pi pe);

chan- >set FOV(60. 0f , 0.0f);

chan- >set Scene(scene);

/1 Determ ne extent of scene’s geonetry.

pf Spher e bsphere;

t ext - >get Bound(&sphere);

chan- >set Near Far (1. 0f , 10. Of *bsphere. radi us) ;

/1 Spin text for 15 seconds.

doubl e startTime = pfGetTinme();

doubl e t;

while ((t = pfGetTinme() - startTinme) < 15.0f)
{

pf Coord Vi ew;
fl oat S, C;

/1 Conpute new view position, rotating around text.
pf Si nCos(45. 0f *t, &s, &c);
vi ew. hpr.set (45.0f*t, -5.0f, 0.0f);
Vi ew. xyz. set (

2.0f * bsphere.radius * s,

-2.0f * bsphere.radius * c,

0. 3f * bsphere.radius);
chan->set Vi ew(vi ew. xyz, view. hpr);

/1 Initiate cull/draw processing for this frane.
pf Frane();
}

/1 Term nate parallel processes and exit.
pfEXxit();

As you can see, Performer allows an application a great deal of control over the scene and pro«
the scene, but sometimes at the expense of usability for the beginner.

Like Inventor, Performer scenes are made of nodes in a directed graph, except that changes lik
and scales are inherited from top to bottom and not from left to Rgregnt nodes do something to th
children like grouping them together (pfGroup), applying a geometric transformation, choosing ¢

child out of many, or cycling through child nodes. Leaf nodes are usually pfGeodes, which grou
together pfGeoSet objects. A pfGeoSet contains a representation of geometric data like a triang
lines and a set of state to apply to the geometry. Performer has traversals to cull the scene gray
the visible objects, sort objects by graphics state changes, and to draw the scene, but usually tt
invoked by pfFrame, which kicks off multiple processes for operating on the scene graph.

Performer contains a large number of facilities for managing scene complexity and scene rate, |
of detail groups (pfLOD) which contain geometric objects of different complexities which Perforr
chooses based on the visual size of the object (distant models need less detail) and the current
of frame timing. Billboards are pictures which represent objects and are rotated to face the view
viewer moves. Applications may get a detailed set of statistics to use for planning scene geome
through pfFrameStats.

Performer has a facility called libpfdb for providing readers and writers for files of any format; re
that already exist include Inventor, LightScape, and AutoCAD file formats. Most loaders use the
database utility library to help construct scene graphs and optimize them for efficient traversal.

The libpfu utility library contains various facilities for input handling, GUI widgets drawn in Open
following a geometric path for walkthroughs, and texture loading, among several others.

Performer 2.3 binaries are available for Linux from Silicon Graphics’ web sienatsgi.com

Although Performer takes advantage of features in IRIX that are not available in Linux and othe
facilities are not yet ported to IRIX (Performer does not run now in multiple processors under Lii
we expect to see a release soon which supports Linux multiprocessing and graphics cards mor:

