Ray Tracing

» What s it?

» Why use it?

» Basics

» Advanced topics
» References

Ray-Tracing: Why Use It?

» Simulate rays of light
» Produces natural lighting effects




= Hard to simulate effects with rasterization
techniques (OpenGL)

= Rasterizers require many passes
= Ray-tracing easier to implement

I e

= Entertainment (Movies, Commercials)
= Games pre-production
= Simulation

I e

= Decartes, 1637 A.D. - analysis of rainbow

= Arthur Appel, 1968 - used for lighting 3D
models

= Turner Whitted, 1980 - “An Improved
lllumination Model for Shaded Display”
really kicked everyone off.

= 1980-now - Lots of research l [




= Generating Rays

= Intersecting Rays with the Scene
= Lighting

= Shadowing

= Reflections

I e

= Simulate light rays from light source to eye
\I./
E - = Light
ve o N

e Ine
e dent ray

?\é\@\
Surface r

= Trace rays from light

= Lots of work for little return
Light

Light Rays




= Trace rays from eye instead

= Do work where it matters
Light

Object

This is what most people mean by "ray tracing”. ‘

= Ray expressed as function of a single
parameter (")

N
XK Y, 2> X Y ZP Xy, Yy 2>
~

<X, Y, Z> =0 o+ try

N ~ t=25

Mg = <Xqs Yo Zg>

Fo= KXoy Y o1 Z 03 t=10

= Trace a ray for each pixel in the image
plane

tan(fov ) * 2

—————— >
Image
Plane
fov

Eye v Eye V

(Looking down from the top) ‘




= Trace a ray for each pixel in the image

plane
(Looking from m ,_Q \
the side) — A
elefe]e]- (tan(fov  )* 2) /' m
Eye el
<n n T (tan(fov  )* 2) /' n

Image ‘
Plane

= Trace a ray for each pixel in the image
plane

renderimage(){
for each pixel i, j in the image

ray.setStart(0, 0, 0); IIr °

ray.setDir ((.5 + i) * tan(fov J¥2 1 m,
(5 + j) * tan(fov W21,
1.0); Ir d

ray.normalize();
imageli][] = rayTrace(ray);

I e

= Want to know: at whapoint (p) does ray
intersect triangle?

= Compute lighting, reflected rays, shadowing
from that point

[ ]
o /
~ (]
lq \
Mo <2 >




= Step 1 : Intersect with plane
(Ax + By + Cz+ D =0)

= Step 2 : Check against triangle edges

—
E =VV. *n (plane A B, O)
d = -A (plane D)

Plug p into (p- E + d; ) for each edge

if signs are all positive or negative, ‘
point is inside triangle!

= Could use plane normals (flat shading)
= Better to interpolate from vertices

Find areas

Vo

&

V,
_ oA
n = any, + by, + chy,
area( V,V,V,)




= Check all triangles, keep the closest
intersection

hitObject(ray) {
for each triangle in scene
does ray intersect triangle?
if(intersected and was closer)
save that intersection
if(intersected)
return intersection point and normal

O

= We'll use triangles for lights
¢ Build complex shapes from triangles

= Some lighting terms

Light /\— ~ Eye
\ W\ N -V
| R
— &
Surface

= Use modified Phong lighting
« similar to OpenGL
« simulates rough and shiny surfaces

for each light

I n = I ambient Kambient +
I diffuse Kdiffuse (L : N) +
I specular Kspecular (R : V) n

&




Simulates the indirect lighting in

= ambient

a scene.

e

Q} Light
b

O

s | giruse  Simulates direct lighting on a
rough surface

= Viewer independent

= Paper, rough wood, brick, etc...

S V..
@
DR |

4

= | gpecuar  Simulates direct lighting on a
smooth surface
= Viewer dependent

= Plastic, metal, polished wood, etc...

O V..
O
Y W

7




= Check against other objects to see if point is
shadowed

V Eye

Shadowing \} ‘

Object >

= Angle of incidence = angle of reflectiorg{ =
6r)
» I, R, N lie in the same plane

= Recursive ray evaluation

rayTrace(ray) {
hitObject(ray, p, n, triangle);
color = object color;
if(object is light)
return(color);
else
return(lighting(p, n, color));

&




= Calculating surface color

lighting(point) {
color = ambient color;
for each light
if(hitObject(shadow ray))
color += lightcolor *
dot(shadow ray, n);
color += rayTrace(reflection) *
pow(dot(reflection, ray), shininess);
return(color);

| X 4

= The main program

main() {
triangles = readTriangles();
image = renderlmage(triangles);
writelImage(image);

&

= Lighting, Shadows, Reflection are enough
to make some compelling images

= Want better lighting and objects
= Need more speed

10



= Better Lighting + Forward Tracing
= Texture Mapping
= Modeling Techniques

= Motion Blur, Depth of Field, Blurry
Reflection/Refraction
« Distributed Ray-Tracing

= Improving Image Quality

= Acceleration Techniques ‘

= Keep track of medium (air, glass, etc)
= Needindex of refractioni )
= Need solid objects

o m ]
sin( 8y)

n
2 Medium 2

'>\f (e.g. water
o




« Cook & Torrance
« Metals have different color at angle
« Oblique reflections leak around corners
« Based on a microfacet model

I e

= Backward tracing doesn’t handle indirect
lighting too well

= To getcausticstrace forwardand store
results in texture map.




= Use texture map to add surface detalil
« Think of it like texturing in OpenGL

= Diffuse, Specular colors

= Shininess value

Bump map

= Transparency value

= More expressive than triangle
= Intersection is probably slower
= U and v on surface can be used as texture s,t

&

13



= Union, Subtraction, Intersection of solid
objects

O-O-- v

= Have to keep track of intersections

I e

= Scene made of parts

= Each part made of smaller parts

= Each smaller part has transformation linking
it to larger part

= Transformation can be changing over time -
Animation

I e

= Average multiple rays instead of just one
ray

= Use for both shadows, reflections,
transmission (refraction)

= Use for motion blur

= Use for depth of field

14



= Oneray is not enough (jaggies)

= Can use multiple rays per pixel -
supersampling

= Can use a few samples, continue if they're
very different -adaptive supersampling

= Texture interpolation & filtering

= 1280x1024 image with 10 rays/pixel

= 1000 objects (triangle, CSG, NURBS)
= 3 levels recursion

39321600000 intersection tests
100000 tests/second -> 109 days!
Must use an acceleration method!

15



= Use simple shape for quick test, keep a
hierarchy

= Break your space into pieces
= Search the structure linearly

P
&
pasipocosng |

= You can always throw more processors at it.

16



= Error analysis

= Hybrid radiosity/ray-tracing

= Metropolis Light Transport

= Memory-Coherent Ray-tracing

= Introduction to Ray-TracingGlassner et al,

1989, 0-12-286160-4

= Advanced Animation and Rendering
TechniquesWatt & Watt, 1992, 0-201-

54412-1
= Computer Graphics: Image Syntheslsy
etal, 1988, 0-8186-8854-4

= SIGGRAPH Proceedings (All)

&

17



