
1

GUI Widgets for OpenGL

• If app is not full-screen or a simple GLUT
program you'll likely need to use an
OpenGL drawing widget within a
traditional 2D UI

• In the past, Xt/Motif was the most common
GUI on 3D workstations. Today on Linux,
there's Qt (used by KDE) and GTK+ (used
by GNOME), and o thers.

General Steps for all
OpenGL Widgets

• Choose framebuffer/window config

• Instantiate a drawing area widget

• Setup callbacks for initialization, resizing,
redrawing, etc.

• Write code for inpu t event process ing

OpenGL with Qt

• QGLFormat - like a GLX Visual, describes
the framebuffer

• QGLContext - GL context which may be
bound to QGLWidgets

• QGLWidget - the drawing area

2

Simple usage:

• Create a new class derived from the
QGLWidget class

• Implement the initializeGL(), resizeGL(),
paintGL() method s

• Instantiate the new class within your UI

Advanced usage:

• Use QGLFormat class to specify frame
buffer attributes

• Create one or more QGLContexts

• Create one or more QGLWidgets

• Explicity manage binding o f contexts to
widgets yourself

OpenGL with GTK+

• GtkGLArea - C bindings

• GtkGLArea-- - C++ bindings

3

Example GtkGLArea usage

1. Setup attribute list:
This is very much like the GLX interface:
const int attribs[] = {GDK_GL_RGBA,

GDK_GL_RED_SIZE, 1,

GDK_GL_GREEN_SIZE, 1,

GDK_GL_BLUE_SIZE, 1,

GDK_GL_DOUBLEBUFFER,

GDK_GL_DEPTH_SIZE, 1,

GDK_GL_NONE };

Example GtkGLArea usage

2. Check if GL suppo rted:
if (!gdk_gl_query()) printf("GL not

supported\n");

If you don’t do this you may get an X protocol
error later.

We want to fail gracefully.

Example GtkGLArea usage

3. Create the GL widget
GtkWidget *glwidget =

GTK_WIDGET(gtk_gl_area_new(attribs));

4

Example GtkGLArea usage

4. Setup widget's s ignal handlers (callbacks)
• Redraw

• Resize

• Etc (mouse event handling)

Example GtkGLArea usage

5. Example redraw function:
gint redraw(GtkWidget *w, GdkEventExpose *event)

{

 if (gtk_gl_area_make_current(GTK_GL_AREA(w))) {

glBegin(GL_TRIANGLES);

...

glEnd();

gtk_gl_area_swapbuffers(GTK_GL_AREA(w));

 }

 return TRUE;

}

Summary

• Don't be afraid to try and u se these
widgets/li braries- they're generally s imple
and u seful.

• Don't reinvent the wheel, build on o ther
people's work. There's probably already
too many UI and OpenGL toolkits.

• Make the effort to create a usable,
polished interface- it makes a good
impression for Linux.

5

OpenGL Solutions for
Linux

• Mesa

• Utah-GLX

• XFree86/DRI

• NVIDIA

• Xi Graphics

• Metrolink

• SGI and the S.I.

OpenGL vs. Mesa

Off icial OpenGL

• Purchase a license to use the trademark

• Passes (most of) the conformance tests

Mesa

• Passes (most of) the conformance tests

Mesa

• An op en/free implementation o f the
OpenGL API

• Available for over five years

• Well established as the "OpenGL solution"
for sys tems with no off icial OpenGL
suppo rt otherwise

• Modu lar and very portable

6

Mesa (cont)

• Good conformance

• Good p erformance

• Originally only a software rendering library

• Now being u sed for hardware acceleration

• www.mesa3d.org

Mesa Software Rendering

X Window System (Linux)

GGI (Linux) SVGAlib (Linux)

BeOS MGL (SciTech)

OpenStep MacOS

MS Windows

OS-independent off-screen rendering

Mesa Software Rendering
for X on L inux

• The original Linux OpenGL solution

• Entirely client-side; built on Xlib

• Allows rendering in almost all display
modes (mono chrome to truecolor)

• Remote display to any X server (doesn't
need GLX)

• Full featured, many OpenGL extensions

• Slow rasterization

7

Mesa Hardware
Acceleration

• There have been three incarnations of
hardware-accelerated Mesa:
• "Stand alone" Mesa + Glide for 3dfx hardware

(Linux)

• Utah-GLX (XFree86 3.3.6)

• DRI (XFree86 4.0 and later)

Mesa + Glide

• Original hardware acceleration for Linux

• Mesa uses Glide for fast rasterization

• Designed for single-context, full-screen
apps (mostly games and demos)

• Simplistic hack a llows for rendering into
an X window (pixel copy)

• Used by many Linux games

Utah-GLX

• Based upon an op en-source
implementation of the GLX protocol
• Original by Steven Parker of the U of Utah

• Uses XFree86 3.3.6 and Mesa 3.2

• Fairly broad hardware supp ort

• Goal was/is to merge into DRI/XFree86 4.0

• Open-source

• utah-glx.sourceforge.net

8

Utah-GLX Hardware
Support

• Matrox G200 and G400

• ATI Rage Pro

• Intel i 810

• NVIDIA Riva, TNT, GeForce

• SiS 6326

• S3 ViRGE

Utah-GLX

• Pros:
• Don't need to recompile X server

• Simple setup (glx.so X server extension, libGL.so
library)

• Simple driver development environment

• Useful performance level and feature set

Utah-GLX

• Cons:
• Very limited direct rendering support

• Limited to XFree86 3.3.x and Mesa 3.2

• No official release at this time

9

Direct Rendering
Infrastructure (DRI)

• An architecture for direct 3D graphics
hardware suppo rt with XFree86 4.0 and
Linux

• Clients talk (almost) directly to the
hardware, no GLX protocol encoding,
transmiss ion o r decoding (bypass the X
server)

• dri.sourceforge.net

DRI

• Design go als:
• High performance - maximize potential of hardware

• Flexibility - for a variety of hardware designs

• Window multiplexing - multiple 3D windows

• Portability - to other OSes and architectures

• Secure - prevent malicious misuse

• Robustness - don't crash or deadlock the system

• Open-source - obvious benefits

Components of the DRI

• Kernel modu le - DMA and AGP memory,
etc

• 2D XFree86 driver - traditional 2D X

• 3D DRI driver - 3D hardware suppo rt

• l ibGL.so encodes GLX or loads DRI driver

• DRI extension - communication and
resource allocation for 3D

• GLX extension - server-side GLX protocol
handling, remote rendering

10

DRI Fallacies

• Drivers have to use Mesa: FALSE!

• Drivers have to be open-source: FALSE!

• DRI development is c losed: FALSE!

DRI Hardware Support in
XFree86 4.0 (and later)

• 3dfx Voodoo 3 and Voodoo 5

• Matrox G200, G400

• ATI Rage 128

• Intel i 810

• 3Dlabs Oxygen

• Sun Creator/Creator3D

DRI / 3dfx Voodoo3 and
Voodoo5

• Voodoo 3 - 16-bit RGB, 16-bit Z buffer.
• multitexture, paletted texture

• pretty good performance

• Voodoo 5 - 32-bit RGBA, 8-bit stencil, 24-bit
Z buffer
• hardware stencil operations

• 2Kx2K textures, texture compression, combiner env

• T-buffer (support underway), very high fillrate

11

DRI / Matrox G200, G400

• G200
• single texture unit

• G400
• multitexture, multi-screen

• much better performance

• Both
• 16-bit RGB, 16-bit Z buffer

• software stencil and accumulation

DRI / ATI Rage 128

• 16 and 24-bit RGB

• 16, 24, 32-bit Z

• multitexture

• software stencil and accumulation

• Radeon supp ort coming

DRI / Intel i810

• inexpensive graphics integrated into
motherboard chipset

• 16-bit RGB and 16-bit Z

• software stencil and accumulation

• single texture unit

12

DRI / 3Dlabs Oxygen

• An early, experimental driver

• Hardware transform and lighting

• 32-bit RGB, 24-bit Z buffer

• single texture unit

• poo r fill rate

DRI Documentation

dri.sourceforge.net

• DRI Compile Guide
• How to download, compile, setup XFree86 4.0 with

the DRI

• DRI User Guide
• How to configure, troubleshoot, and use the DRI

DRI Configuration

• Userful Environment Variables from the
DRI User Guide:
LIBGL_DEBUG

LIBGL_DRIVERS_PATH

LIBGL_ALWAYS_INDIRECT

LIBGL_MULTIHEAD

MESA_DEBUG

13

Getting the DRI

• Pre-packaged in d istribution
• Debian, SuSe, Red Hat, 3dfx, XFree86.Org

• Off icial Releases
• Included in XFree86 releases (4.0.1)

• Latest Stable Code
• Download from DRI CVS tree on SourceForge

• Bleeding Edge
• Download from DRI CVS dev branch

Mesa is part of the
XFree86/DRI package

• DRI includes Mesa
• No need to install Mesa separately
• If no h ardware accel available, DRI will

render using Mesa in software

l ibGL from Mesa vs from
XFree86/DRI

• Traditional Mesa libGL
• Pseudo-GLX implementation

• Works with any X server

• Limited hardware support

• XFree86DRI libGL
• Real GLX interface

• GLX protocol encoder

• Dynamic Loader for 3D hardware drivers

14

Upgrading to the DRI

• Remove any ex isting Mesa installation
• Install XFree86 4.0.1

• Software Mesa will still be used if you have no
hardware

• Still need standalone Mesa and Glide for
Voodoo 1 and 2

• Use SGI Sample Implementation’s GLU

DRI Open-Source
Development

• The usual open-source benefits,
especially:
• Broad coverage testing

• Quick bug identification and repair (in many cases)

• Anyone can develop new drivers or new OS support

• Close user/developer community

• Shared driver codebase: bug fixes, optimizations,
new features are of benefit to all

DRI Future Work

• Suppo rt new graphics c hips

• Improve performance of existing d rivers

• Implement new OpenGL extensions

• Port to non -x86 and o ther operating
sys tems

• Inclusion o f XFree86 4.0.x with DRI into
mainstream Linux distros

15

DRI Summary

• DRI facilitates 3D hardware on Linux
• Good hardware support and will just get better

• Open source improves quality and acceptance

• Hardware vendors decided to bet on Linux
• IHVs and ISVs funded the development

• Let IHVs know that you use their hardware on Linux

• Let IHVs know you'll buy new products if they
support Linux

